DOI QR코드

DOI QR Code

Novel Biomarkers for Prediction of Response to Preoperative Systemic Therapies in Gastric Cancer

  • Cavaliere, Alessandro (Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata) ;
  • Merz, Valeria (Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata) ;
  • Casalino, Simona (Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata) ;
  • Zecchetto, Camilla (Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata) ;
  • Simionato, Francesca (Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata) ;
  • Salt, Hayley Louise (Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, University of Verona) ;
  • Contarelli, Serena (Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, University of Verona) ;
  • Santoro, Raffaela (Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, University of Verona) ;
  • Melisi, Davide (Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata)
  • Received : 2019.07.09
  • Accepted : 2019.09.17
  • Published : 2019.12.31

Abstract

Preoperative chemo- and radiotherapeutic strategies followed by surgery are currently a standard approach for treating locally advanced gastric and esophagogastric junction cancer in Western countries. However, in a large number of cases, the tumor is extremely resistant to these treatments and the patients are exposed to unnecessary toxicity and delayed surgical therapy. The current clinical trials evaluating the combination of preoperative systemic therapies with modern targeted and immunotherapeutic agents represent a unique opportunity for identifying predictive biomarkers of response to select patients that would benefit the most from these treatments. However, it is of utmost importance that these potential biomarkers are corroborated by extensive preclinical and translational research. The aim of this review article is to present the most promising biomarkers of response to classic chemotherapeutic, anti-HER2, antiangiogenic, and immunotherapeutic agents that can be potentially useful for personalized preoperative systemic therapies in gastric cancer patients.

Keywords

References

  1. World Health Organization, International Agency for Research on Cancer. GLOBOCAN 2018: stomach cancer fact sheet. Geneva: International Agency for Research on Cancer; 2018 [cited 2019 Sep 12]. Available from: http://gco.iarc.fr/today/data/factsheets/cancers/7-Stomach-fact-sheet.pdf.
  2. Spolverato G, Ejaz A, Kim Y, Squires MH, Poultsides GA, Fields RC, et al. Rates and patterns of recurrence after curative intent resection for gastric cancer: a United States multi-institutional analysis. J Am Coll Surg 2014;219:664-675. https://doi.org/10.1016/j.jamcollsurg.2014.03.062
  3. Al-Batran SE, Homann N, Pauligk C, Goetze TO, Meiler J, Kasper S, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 2019;393:1948-1957. https://doi.org/10.1016/S0140-6736(18)32557-1
  4. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 2012;366:2074-2084. https://doi.org/10.1056/NEJMoa1112088
  5. Hoeppner J, Lordick F, Brunner T, Glatz T, Bronsert P, Rothling N, et al. ESOPEC: prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer 2016;16:503. https://doi.org/10.1186/s12885-016-2564-y
  6. Guideline Committee of the Korean Gastric Cancer Association (KGCA), Development Working Group & Review Panel. Korean practice guideline for gastric cancer 2018: an evidence-based, multi-disciplinary approach. J Gastric Cancer 2019;19:1-48. https://doi.org/10.5230/jgc.2019.19.e8
  7. Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med 2007;357:1810-1820. https://doi.org/10.1056/NEJMoa072252
  8. Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 2012;379:315-321. https://doi.org/10.1016/S0140-6736(11)61873-4
  9. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al.; MAGIC Trial Participants. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006;355:11-20. https://doi.org/10.1056/NEJMoa055531
  10. Janjigian YY, Sanchez-Vega F, Jonsson P, Chatila WK, Hechtman JF, Ku GY, et al. Genetic predictors of response to systemic therapy in esophagogastric cancer. Cancer Discov 2018;8:49-58. https://doi.org/10.1158/2159-8290.CD-17-0787
  11. Corso G, Pedrazzani C, Marrelli D, Pascale V, Pinto E, Roviello F. Correlation of microsatellite instability at multiple loci with long-term survival in advanced gastric carcinoma. Arch Surg 2009;144:722-727. https://doi.org/10.1001/archsurg.2009.42
  12. Marrelli D, Polom K, Pascale V, Vindigni C, Piagnerelli R, De Franco L, et al. Strong prognostic value of microsatellite instability in intestinal type non-cardia gastric cancer. Ann Surg Oncol 2016;23:943-950. https://doi.org/10.1245/s10434-015-4931-3
  13. Fang WL, Chang SC, Lan YT, Huang KH, Chen JH, Lo SS, et al. Microsatellite instability is associated with a better prognosis for gastric cancer patients after curative surgery. World J Surg 2012;36:2131-2138. https://doi.org/10.1007/s00268-012-1652-7
  14. Smyth EC, Wotherspoon A, Peckitt C, Gonzalez D, Hulkki-Wilson S, Eltahir Z, et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial. JAMA Oncol 2017;3:1197-1203. https://doi.org/10.1001/jamaoncol.2016.6762
  15. Noh SH, Park SR, Yang HK, Chung HC, Chung IJ, Kim SW, et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol 2014;15:1389-1396. https://doi.org/10.1016/S1470-2045(14)70473-5
  16. Choi YY, Kim H, Shin SJ, Kim HY, Lee J, Yang HK, et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC randomized controlled study. Ann Surg 2019;270:309-316. https://doi.org/10.1097/SLA.0000000000002803
  17. Pietrantonio F, Raimondi A, Choi YY, Kang W, Langley RE, Kim YW, et al. MSI-GC-01: Individual patient data (IPD) meta-analysis of microsatellite instability (MSI) and gastric cancer (GC) from four randomized clinical trials (RCTs). J Clin Oncol 2019;37 4 Suppl:66.
  18. Santoro R, Carbone C, Piro G, Chiao PJ, Melisi D. TAK-ing aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer therapy. Drug Resist Updat 2017;33-35:36-42. https://doi.org/10.1016/j.drup.2017.10.004
  19. Zhuang Z, Ju HQ, Aguilar M, Gocho T, Li H, Iida T, et al. IL1 receptor antagonist inhibits pancreatic cancer growth by abrogating NF-${\kappa}B$ activation. Clin Cancer Res 2016;22:1432-1444. https://doi.org/10.1158/1078-0432.CCR-14-3382
  20. Carbone C, Melisi D. NF-${\kappa}B$ as a target for pancreatic cancer therapy. Expert Opin Ther Targets 2012;16 Suppl 2:S1-S10. https://doi.org/10.1517/14728222.2011.645806
  21. Melisi D, Chiao PJ. NF-kappa B as a target for cancer therapy. Expert Opin Ther Targets 2007;11:133-144. https://doi.org/10.1517/14728222.11.2.133
  22. Hong SY, Yoon WH, Park JH, Kang SG, Ahn JH, Lee TH. Involvement of two NF-kappa B binding elements in tumor necrosis factor alpha -, CD40-, and Epstein-Barr virus latent membrane protein 1-mediated induction of the cellular inhibitor of apoptosis protein 2 gene. J Biol Chem 2000;275:18022-18028. https://doi.org/10.1074/jbc.M001202200
  23. Srinivasula SM, Ashwell JD. IAPs: what's in a name? Mol Cell 2008;30:123-135. https://doi.org/10.1016/j.molcel.2008.03.008
  24. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281:1680-1683. https://doi.org/10.1126/science.281.5383.1680
  25. Park SM, Yoon JB, Lee TH. Receptor interacting protein is ubiquitinated by cellular inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) in vitro. FEBS Lett 2004;566:151-156. https://doi.org/10.1016/j.febslet.2004.04.021
  26. Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, Carbone C, et al. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst 2011;103:1190-1204. https://doi.org/10.1093/jnci/djr243
  27. Piro G, Giacopuzzi S, Bencivenga M, Carbone C, Verlato G, Frizziero M, et al. TAK1-regulated expression of BIRC3 predicts resistance to preoperative chemoradiotherapy in oesophageal adenocarcinoma patients. Br J Cancer 2015;113:878-885. https://doi.org/10.1038/bjc.2015.283
  28. Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int 2014;2014:852748.
  29. Connell CM, Doherty GJ. Activating HER2 mutations as emerging targets in multiple solid cancers. ESMO Open 2017;2:e000279. https://doi.org/10.1136/esmoopen-2017-000279
  30. Menard S, Pupa SM, Campiglio M, Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene 2003;22:6570-6578. https://doi.org/10.1038/sj.onc.1206779
  31. Koeppen HK, Wright BD, Burt AD, Quirke P, McNicol AM, Dybdal NO, et al. Overexpression of HER2/neu in solid tumours: an immunohistochemical survey. Histopathology 2001;38:96-104. https://doi.org/10.1046/j.1365-2559.2001.01084.x
  32. Tanner M, Hollmen M, Junttila TT, Kapanen AI, Tommola S, Soini Y, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol 2005;16:273-278. https://doi.org/10.1093/annonc/mdi064
  33. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 2008;19:1523-1529. https://doi.org/10.1093/annonc/mdn169
  34. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202-209. https://doi.org/10.1038/nature13480
  35. Hudis CA. Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med 2007;357:39-51. https://doi.org/10.1056/NEJMra043186
  36. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010;376:687-697. https://doi.org/10.1016/S0140-6736(10)61121-X
  37. Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, et al. Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clin Cancer Res 2011;17:5060-5070. https://doi.org/10.1158/1078-0432.CCR-10-2927
  38. Tabernero J, Hoff PM, Shen L, Ohtsu A, Shah MA, Cheng K, et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol 2018;19:1372-1384. https://doi.org/10.1016/S1470-2045(18)30481-9
  39. Thuss-Patience PC, Shah MA, Ohtsu A, Van Cutsem E, Ajani JA, Castro H, et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol 2017;18:640-653. https://doi.org/10.1016/S1470-2045(17)30111-0
  40. Hecht JR, Bang YJ, Qin SK, Chung HC, Xu JM, Park JO, et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC--a randomized phase III trial. J Clin Oncol 2016;34:443-451.
  41. Satoh T, Xu RH, Chung HC, Sun GP, Doi T, Xu JM, et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN--a randomized, phase III study. J Clin Oncol 2014;32:2039-2049. https://doi.org/10.1200/JCO.2013.53.6136
  42. Seo S, Ryu MH, Park YS, Ahn JY, Park Y, Park SR, et al. Loss of HER2 positivity after anti-HER2 chemotherapy in HER2-positive gastric cancer patients: results of the GASTric cancer HER2 reassessment study 3 (GASTHER3). Gastric Cancer 2019;22:527-535. https://doi.org/10.1007/s10120-018-0891-1
  43. Pietrantonio F, Caporale M, Morano F, Scartozzi M, Gloghini A, De Vita F, et al. HER2 loss in HER2-positive gastric or gastroesophageal cancer after trastuzumab therapy: Implication for further clinical research. Int J Cancer 2016;139:2859-2864. https://doi.org/10.1002/ijc.30408
  44. Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP. The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 2004;379:301-307. https://doi.org/10.1042/bj20031839
  45. Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 2008;27:5527-5541. https://doi.org/10.1038/onc.2008.247
  46. Kim C, Lee CK, Chon HJ, Kim JH, Park HS, Heo SJ, et al. PTEN loss and level of HER2 amplification is associated with trastuzumab resistance and prognosis in HER2-positive gastric cancer. Oncotarget 2017;8:113494-113501. https://doi.org/10.18632/oncotarget.23054
  47. Zhang X, Park JS, Park KH, Kim KH, Jung M, Chung HC, et al. PTEN deficiency as a predictive biomarker of resistance to HER2-targeted therapy in advanced gastric cancer. Oncology 2015;88:76-85. https://doi.org/10.1159/000366426
  48. Deguchi Y, Okabe H, Oshima N, Hisamori S, Minamiguchi S, Muto M, et al. PTEN loss is associated with a poor response to trastuzumab in HER2-overexpressing gastroesophageal adenocarcinoma. Gastric Cancer 2017;20:416-427. https://doi.org/10.1007/s10120-016-0627-z
  49. Pietrantonio F, Fuca G, Morano F, Gloghini A, Corso S, Aprile G, et al. Biomarkers of primary resistance to trastuzumab in HER2-positive metastatic gastric cancer patients: the AMNESIA case-control study. Clin Cancer Res 2018;24:1082-1089. https://doi.org/10.1158/1078-0432.CCR-17-2781
  50. Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell 2018;34:21-43. https://doi.org/10.1016/j.ccell.2018.03.022
  51. Kang KA, Piao MJ, Ryu YS, Kang HK, Chang WY, Keum YS, et al. Interaction of DNA demethylase and histone methyltransferase upregulates NRF2 in 5-fluorouracil-resistant colon cancer cells. Oncotarget 2016;7:40594-40620. https://doi.org/10.18632/oncotarget.9745
  52. Satoh H, Moriguchi T, Takai J, Ebina M, Yamamoto M. NRF2 prevents initiation but accelerates progression through the KRAS signaling pathway during lung carcinogenesis. Cancer Res 2013;73:4158-4168. https://doi.org/10.1158/0008-5472.CAN-12-4499
  53. Dai B, Yoo SY, Bartholomeusz G, Graham RA, Majidi M, Yan S, et al. KEAP1-dependent synthetic lethality induced by AKT and TXNRD1 inhibitors in lung cancer. Cancer Res 2013;73:5532-5543. https://doi.org/10.1158/0008-5472.CAN-13-0712
  54. Gambardella V, Gimeno-Valiente F, Tarazona N, Martinez-Ciarpaglini C, Roda D, Fleitas T, et al. NRF2 through RPS6 activation is related to anti-HER2 drug resistance in HER2-amplified gastric cancer. Clin Cancer Res 2019;25:1639-1649. https://doi.org/10.1158/1078-0432.CCR-18-2421
  55. Kwak EL, Ahronian LG, Siravegna G, Mussolin B, Borger DR, Godfrey JT, et al. Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-amplified esophagogastric cancer. Cancer Discov 2015;5:1271-1281. https://doi.org/10.1158/2159-8290.CD-15-0748
  56. Touat M, Ileana E, Postel-Vinay S, Andre F, Soria JC. Targeting FGFR signaling in cancer. Clin Cancer Res 2015;21:2684-2694. https://doi.org/10.1158/1078-0432.CCR-14-2329
  57. Hecht D, Zimmerman N, Bedford M, Avivi A, Yayon A. Identification of fibroblast growth factor 9 (FGF9) as a high affinity, heparin dependent ligand for FGF receptors 3 and 2 but not for FGF receptors 1 and 4. Growth Factors 1995;12:223-233. https://doi.org/10.3109/08977199509036882
  58. Piro G, Carbone C, Cataldo I, Di Nicolantonio F, Giacopuzzi S, Aprile G, et al. An FGFR3 autocrine loop sustains acquired resistance to trastuzumab in gastric cancer patients. Clin Cancer Res 2016;22:6164-6175. https://doi.org/10.1158/1078-0432.CCR-16-0178
  59. Tortora G, Melisi D, Ciardiello F. Angiogenesis: a target for cancer therapy. Curr Pharm Des 2004;10:11-26. https://doi.org/10.2174/1381612043453595
  60. Juttner S, Wissmann C, Jons T, Vieth M, Hertel J, Gretschel S, et al. Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J Clin Oncol 2006;24:228-240. https://doi.org/10.1200/JCO.2004.00.3467
  61. Suzuki S, Dobashi Y, Hatakeyama Y, Tajiri R, Fujimura T, Heldin CH, et al. Clinicopathological significance of platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-A expression, PDGF receptor-${\beta}$ phosphorylation, and microvessel density in gastric cancer. BMC Cancer 2010;10:659. https://doi.org/10.1186/1471-2407-10-659
  62. Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 2011;29:3968-3976. https://doi.org/10.1200/JCO.2011.36.2236
  63. Cunningham D, Stenning SP, Smyth EC, Okines AF, Allum WH, Rowley S, et al. Peri-operative chemotherapy with or without bevacizumab in operable oesophagogastric adenocarcinoma (UK Medical Research Council ST03): primary analysis results of a multicentre, open-label, randomised phase 2-3 trial. Lancet Oncol 2017;18:357-370. https://doi.org/10.1016/S1470-2045(17)30043-8
  64. Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, Diab S, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol 2010;28:780-787. https://doi.org/10.1200/JCO.2009.23.7537
  65. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014;383:31-39. https://doi.org/10.1016/S0140-6736(13)61719-5
  66. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 2014;15:1224-1235. https://doi.org/10.1016/S1470-2045(14)70420-6
  67. Fuchs CS, Shitara K, Di Bartolomeo M, Lonardi S, Al-Batran SE, Van Cutsem E, et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2019;20:420-435. https://doi.org/10.1016/S1470-2045(18)30791-5
  68. Fuchs CS, Tabernero J, Tomasek J, Chau I, Melichar B, Safran H, et al. Biomarker analyses in REGARD gastric/GEJ carcinoma patients treated with VEGFR2-targeted antibody ramucirumab. Br J Cancer 2016;115:974-982. https://doi.org/10.1038/bjc.2016.293
  69. Van Cutsem E, Muro K, Cunningham D, Bodoky G, Sobrero A, Cascinu S, et al. O-007: Biomarker analyses of second-line ramucirumab in patients with advanced gastric cancer from RAINBOW, a global, randomized, double-blind, phase 3 study. Ann Oncol 2016;27:ii120.
  70. Carbone C, Piro G, Merz V, Simionato F, Santoro R, Zecchetto C, et al. Angiopoietin-like proteins in angiogenesis, inflammation and cancer. Int J Mol Sci 2018;19:E431. https://doi.org/10.3390/ijms19020431
  71. Carbone C, Moccia T, Zhu C, Paradiso G, Budillon A, Chiao PJ, et al. Anti-VEGF treatment-resistant pancreatic cancers secrete proinflammatory factors that contribute to malignant progression by inducing an EMT cell phenotype. Clin Cancer Res 2011;17:5822-5832. https://doi.org/10.1158/1078-0432.CCR-11-1185
  72. Gaianigo N, Melisi D, Carbone C. EMT and treatment resistance in pancreatic cancer. Cancers (Basel) 2017;9:E122. https://doi.org/10.3390/cancers9090122
  73. Carbone C, Tamburrino A, Piro G, Boschi F, Cataldo I, Zanotto M, et al. Combined inhibition of IL1, CXCR1/2, and $TGF{\beta}$ signaling pathways modulates in-vivo resistance to anti-VEGF treatment. Anticancer Drugs 2016;27:29-40. https://doi.org/10.1097/CAD.0000000000000301
  74. Carbone C, Piro G, Simionato F, Ligorio F, Cremolini C, Loupakis F, et al. Homeobox B9 mediates resistance to anti-VEGF therapy in colorectal cancer patients. Clin Cancer Res 2017;23:4312-4322. https://doi.org/10.1158/1078-0432.CCR-16-3153
  75. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027-1034. https://doi.org/10.1084/jem.192.7.1027
  76. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015;125:3335-3337. https://doi.org/10.1172/JCI83871
  77. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med 2012;366:2517-2519. https://doi.org/10.1056/NEJMe1205943
  78. Niccolai E, Taddei A, Prisco D, Amedei A. Gastric cancer and the epoch of immunotherapy approaches. World J Gastroenterol 2015;21:5778-5793. https://doi.org/10.3748/wjg.v21.i19.5778
  79. Ratti M, Lampis A, Hahne JC, Passalacqua R, Valeri N. Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 2018;75:4151-4162. https://doi.org/10.1007/s00018-018-2906-9
  80. Sasaki S, Nishikawa J, Sakai K, Iizasa H, Yoshiyama H, Yanagihara M, et al. EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer 2019;22:486-496. https://doi.org/10.1007/s10120-018-0880-4
  81. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017;377:2500-2501. https://doi.org/10.1056/NEJMc1713444
  82. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014;515:568-571. https://doi.org/10.1038/nature13954
  83. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012;12:298-306. https://doi.org/10.1038/nrc3245
  84. Ma C, Patel K, Singhi AD, Ren B, Zhu B, Shaikh F, et al. Programmed death-ligand 1 expression is common in gastric cancer associated with Epstein-Barr virus or microsatellite instability. Am J Surg Pathol 2016;40:1496-1506. https://doi.org/10.1097/PAS.0000000000000698
  85. Hewitt LC, Inam IZ, Saito Y, Yoshikawa T, Quaas A, Hoelscher A, et al. Epstein-Barr virus and mismatch repair deficiency status differ between oesophageal and gastric cancer: a large multi-centre study. Eur J Cancer 2018;94:104-114. https://doi.org/10.1016/j.ejca.2018.02.014
  86. Mimura K, Teh JL, Okayama H, Shiraishi K, Kua LF, Koh V, et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci 2018;109:43-53. https://doi.org/10.1111/cas.13424
  87. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008;8:467-477. https://doi.org/10.1038/nri2326
  88. Mimura K, Kua LF, Shiraishi K, Kee Siang L, Shabbir A, Komachi M, et al. Inhibition of mitogen-activated protein kinase pathway can induce upregulation of human leukocyte antigen class I without PD-L1-upregulation in contrast to interferon-${\gamma}$ treatment. Cancer Sci 2014;105:1236-1244. https://doi.org/10.1111/cas.12503
  89. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-264. https://doi.org/10.1038/nrc3239
  90. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018;24:1449-1458. https://doi.org/10.1038/s41591-018-0101-z
  91. Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandala M, Ryu MH, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 2018;392:123-133. https://doi.org/10.1016/S0140-6736(18)31257-1
  92. Qamra A, Xing M, Padmanabhan N, Kwok JJ, Zhang S, Xu C, et al. Epigenomic promoter alterations amplify gene isoform and immunogenic diversity in gastric adenocarcinoma. Cancer Discov 2017;7:630-651. https://doi.org/10.1158/2159-8290.CD-16-1022
  93. Sundar R, Huang KK, Qamra A, Kim KM, Kim ST, Kang WK, et al. Epigenomic promoter alterations predict for benefit from immune checkpoint inhibition in metastatic gastric cancer. Ann Oncol 2019;30:424-430. https://doi.org/10.1093/annonc/mdy550
  94. Bieberstein NI, Carrillo Oesterreich F, Straube K, Neugebauer KM. First exon length controls active chromatin signatures and transcription. Cell Reports 2012;2:62-68. https://doi.org/10.1016/j.celrep.2012.05.019
  95. Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet 2008;24:167-177. https://doi.org/10.1016/j.tig.2008.01.008
  96. Kim JY, Shin NR, Kim A, Lee HJ, Park WY, Kim JY, et al. Microsatellite instability status in gastric cancer: a reappraisal of its clinical significance and relationship with mucin phenotypes. Korean J Pathol 2013;47:28-35. https://doi.org/10.4132/KoreanJPathol.2013.47.1.28
  97. Martinez-Ciarpaglini C, Fleitas-Kanonnikoff T, Gambardella V, Llorca M, Mongort C, Mengual R, et al. Assessing molecular subtypes of gastric cancer: microsatellite unstable and Epstein-Barr virus subtypes. Methods for detection and clinical and pathological implications. ESMO Open 2019;4:e000470. https://doi.org/10.1136/esmoopen-2018-000470
  98. Kanayama K, Imai H, Usugi E, Shiraishi T, Hirokawa YS, Watanabe M. Association of HER2 gene amplification and tumor progression in early gastric cancer. Virchows Arch 2018;473:559-565. https://doi.org/10.1007/s00428-018-2433-y
  99. Zheng L, Wang L, Ajani J, Xie K. Molecular basis of gastric cancer development and progression. Gastric Cancer 2004;7:61-77. https://doi.org/10.1007/s10120-004-0277-4
  100. Melisi D, Piro G, Tamburrino A, Carbone C, Tortora G. Rationale and clinical use of multitargeting anticancer agents. Curr Opin Pharmacol 2013;13:536-542. https://doi.org/10.1016/j.coph.2013.06.012

Cited by

  1. Mechanisms of Pharmaceutical Therapy and Drug Resistance in Esophageal Cancer vol.9, 2021, https://doi.org/10.3389/fcell.2021.612451
  2. Phenotypic Plasticity Conferred by the Metastatic Microenvironment of the Brain Strengthens the Intracranial Tumorigenicity of Lung Tumor Cells vol.11, 2021, https://doi.org/10.3389/fonc.2021.637911
  3. CD44v6 High Membranous Expression Is a Predictive Marker of Therapy Response in Gastric Cancer Patients vol.9, pp.9, 2021, https://doi.org/10.3390/biomedicines9091249