• Title/Summary/Keyword: Salinity distribution

Search Result 535, Processing Time 0.029 seconds

An Experimental Study on Flocculation and Settling of Fine-grained Suspended Sediments (부유물질의 응접작용 및 침전특성에 관한 실험적 연구)

  • Chu, Yong-Shik;Park, Yong-Ahn;Lee, Hee-Jun;Park, Kwang-Soon;Kweon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.40-49
    • /
    • 1999
  • A laboratory flume experiment, using turbulence-generating acryl tank and natural sediments, was conducted to investigate the effects of salinity, concentration of suspended sediment, turbulence and clay minerals on the flocculation and settling of fine-grained suspended sediments. While experiments were run, a sequence of water samples were taken near the bottom of the tank to analyze the variations of size distribution and relative contents of clay minerals. The results of the salinity experiment indicate that median settling velocity ($W_{50}$) increases linearly with salinity. Different settling processes of suspended sediments under variable concentrations appear to be predictable, depending upon the range of the suspension concentration. At concentrations less than 200 mg/l, $W_{50}$ is rarely varied with concentration probably because of the individual--grain settling mode. In the range of 200 to 13,000 mg/l show $W_{50}$ and concentration a good relationship following an empirical formula: $W_{50}=0.45C^{0.44}$. This relationship, however, no longer holds in concentrations exceeding 13,000 mg/l; instead, a more or less reverse one is shown. This result suggests an effect of hindered settling. The turbulence effect is somewhat different from that of concentration. Turbulence accelerates the flocculation and settling susepended sediments at low concentration (200 mg/l), whereas at high concentration turbulence breaks floes down and impedes the settling. Size distribution of suspended sediments sampled near the bottom of the tank tend to be more negatively skewed and leptokurtic in turbulent conditions compared to those in static conditions. The clay mineral analysis from the sequential water samples shows that over time the content of smectite decreases most rapidly with illite remaining concentrated in suspension. This means that smectite, among other clay minerals, plays the most effective role in the flocculation of fine-grained sediment in saline water.

  • PDF

Summer Environmental Evaluation of Water and Sediment Quality in the South Sea and East China Sea (남해 및 동중국해의 하계 수질 및 저질 환경평가)

  • Lee, Dae-In;Cho, Hyeon-Seo;Yoon, Yang-Ho;Choi, Young-Chan;Lee, Jeong-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.83-99
    • /
    • 2005
  • To evaluate environmental charateristics of the South Sea and East China Sea on summer, water and sediment quality were measured in June 2001-2003. Surface layer was affceted by Warm water originated from the high temperature and salinity-Tsushima Warm Current, on the other hand, Yellow Sea Cold Water was spread to the bottom layer in the south-western part of the Jeju island, and salinity at stations near the Yangtze River was decreased below 29psu because of a enormous freshwater discharges. Thermocline-depth was formed at about 10m, and chlorophyll maximum layer was existed in and below the thermocline. COD(Chemical Oxygen Demand), TN(Total Nitrogen), and TP(Total Phosphorus) concentrations showed seawater quality grade II in surface layer of the most area, but concentrations of such as COD, Chl. a, TSS(Total Suspended Solid), and nutrients were greatly increased in the effect area of Yangtze River discharges. Correlations between dissolved inorganic nitrogen, Chl. a and salinity were negative patterns strongly, in contrast, those of inorganic phosphorus, COD and Chl. a were positive, which indicates that phytoplankton biomass and phosphorus are considered as important factors of organic matter distribution and algal growth, respectively. in the study area. The distribution of ignition loss, COD, and $H_2S$ of surface sediment were in the ranges of 2.61-8.81%, $0.64-11.86mgO_2/g-dry$, and ND-0.25 mgS/g-dry, respectively, with relatively high concentration in the eastern part of the study area. Therefore, to effective and sustainable use and management of this area, continuous monitoring and countermeasures about major input sources to the water and sediment, and prediction according to the environmental variation, are necessary.

  • PDF

Distribution of water Masses and Chemical Properties in the East Sea of korea in Spring 2005 (2005년 춘계 동해 중남부 해역의 수괴 분포 및 화학적 특성 연구)

  • Kim, Y.S.;Hwang, J.D.;Youn, S.H.;Yoon, S.C.;Hwang, U.G.;Shim, J.M.;Lee, Y.H.;Jin, H.G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.235-243
    • /
    • 2007
  • In order to understand the water mass properties in the southern location of the East Sea in the Korean coasts, the vertical distributions (down to 2,000 m deep) of water temperature, salinity, and dissolved inorganic nutrients were determined in April of 2005. The water mass of the surveyed location showed distinct vertical layers; highly saline surface, surface mixing layer, and thermocline of low temperature and salinity. The water layer below 300 m was characterized by water temperature lower than $1^{\circ}C$ and salinity 34.06, showing a representative water mass of the East Sea. The inorganic nutrients rapidly increased from 200m in the northern and southern parts around Ulleung Basin. A marked environmental difference was found between two layers separated by thermocline. The upper layer of the thermocline was oligotrophic and the vertical distribution of nutrient was very stable. In the water layer between 100 and 200m the nutrients slightly increased but remained still stable. From southern coasts to northeastern Ulleung, the water mass properties were site specific; the thickness of the surface mixed layer and nutricline showed a trend diminishing toward the northern locations probably due to diminished influence of Tsushima water. Redfield ratio (N:P=16:1) based on the ratio of chemical composition in organism revealed that nitrogen value continuously decreased to less than 16 with the water depth down to loom from the thermocline. The value in the water layer deeper than 100 to 200 m, thereafter, showed an increasing trend (over 16). This result was further supported by the finding of lower chlrophyll a content in the layer.

  • PDF

Structure of the Phytoplanktonic communities in Jeju Strait and Northern East China Sea and Dinoflagellate Blooms in Spring 2004: Analysis of Photosynthetic Pigments (봄철 제주해협과 동중국해 북부해역에서 식물플랑크톤의 광합성 색소분석을 이용한 군집 분포 특성과 dinoflagellate 적조)

  • Park, Mi-Ok;Kang, Sung-Won;Lee, Chung-Il;Choi, Tae-Seob;Lantoine, Francois
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • Distribution characteristics of phytoplankton community were investigated by HPLC and flow cytometry in Jeju Strait and the Northern East China Sea (NECS) in May 2004, in order to understand the relationship between physical environmental factors and distribution pattern of phytoplankton communities. Based on temperature and salinity data, three distinct water masses were identified; warm and saline Tsushima Warm Current (TWC), which is flowing from northwest of Jeju Island, warm and low saline water at the center of Jeju Strait, which is originated from China Coastal Water (CCW) and relatively cold and high saline water originated from Yellow Sea at the bottom of the Jeju Strait. At Jeju Strait, less saline water (<33 psu) of 15 km width occupied surface layer up to 20 m which located at 20 km offshore and strong thermal front between warm and saline water and cold and less saline water was found in the middle of the Jeju Strait. Vertical transect of temperature and salinity at the NECS also showed that low saline (<33 psu) water occupied the upper 20 m layer and cold and saline water was present at the eastern part. Chl a was measured as $0.06{\sim}3.07\;{\mu}g/L$. Spring bloom of phytoplankton was recognized by the high concentrations of Chl a at the low saline water masses influenced by the CCW and subsurface chlorophyll maximum layer appeared between $20{\sim}30\;m$ depth, which was at thermocline depth or below. Abundances of Synechococcus and picoeukaryote were $0.2{\sim}9.5{\times}10^4\;cells/mL$ and $0.43{\sim}4.3{\times}10^4\;cells/mL$, respectively. Dinoflagellate, diatom and prymnesiophyte were major groups and minor groups were chlorophyte+prasinophyte, chrysophyte, cryptophyte and cyanophyte. Especially high abundance of dinoflagellate was identified by high concentration (>1\;{\mu}g/L$) of peridinin at the bottom of the thermocline, which showed an outbreak of red tide by high density of dinoflagellates. Abundances of picoeukaryote in Jeju Strait were about $5{\sim}10$ times higher than abundance measured in Kuroshio water and showed a good correlation with Chl b (Pras+Viola), which implies the most of population of picoeukaryote was composed of prasinophytes. Prochlorococcus was not detected at all, which suggests that Kuroshio Current did not directly influenced on the study area. Based on the strong negative correlations between biomass of phytoplankton (Chl a) and temperature+salinity, the primary production and biomass of phytoplankton in the study area were controlled by the nutrients supply from CCW.

Coexistence between Zostera marina and Zostera japonica in seagrass beds of the Seto Inland Sea, Japan

  • Sugimoto, Kenji;Nakano, Yoichi;Okuda, Tetsuji;Nakai, Satoshi;Nishijima, Wataru;Okada, Mitsumasa
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.45-53
    • /
    • 2017
  • Background: There have been many studies on the growth conditions of Zostera marina and Zostera japonica, but few studies have examined how spatial and temporal factors affect growth in established seagrass beds or the distribution range and shoot density. This study aims to clarify the factors that determine the temporal and spatial distribution of Zostera marina and Zostera japonica in the Seto Inland Sea east of Yamaguchi Prefecture. Methods: The study site is in Hiroshima Bay of the Seto Inland Sea, along the east coast of Yamaguchi Prefecture, Japan. We monitored by diving observation to confirm shoot density, presence or absence of both species and observed water temperature, salinity by sensor in study sites. Results: The frequency of occurrence of Zostera marina was high in all seasons, even in water depths of D.L. + 1 to -5 m ($80{\pm}34%$ to $89{\pm}19%$; mean ${\pm}$ standard deviation), but lower (as low as $43{\pm}34%$) near the breakwall, where datum level was 1 to 2 m, and it was further reduced in datum level -5 m and deeper. The frequency of occurrence of Zostera japonica was highest in water with a datum level of +1 to 0 m. However, in datum level of 0 m or deeper, it became lower as the water depth became deeper. Datum level +1 m to 0 m was an optimal water depth for both species. The frequency of occurrence and the shoot density of both species showed no negative correlation. In 2011, the daily mean water temperature was $10^{\circ}C$ or less on more days than in other years and the feeding damage by S. fuscescens in the study sites caused damage at the tips. Conclusions: We considered that the relationship between these species at the optimal water depth was not competitive, but due to differences in spatial distribution, Zostera marina and Zostera japonica do not influence each other due to temperature conditions and feeding damage and other environmental conditions. Zostera japonica required light intensity than Zostera marina, and the water depth played an important role in the distribution of both species.

Distribution Chara Cteristics of Polychlorinated Biphenyls in the Southern Korea (동해남부 대마난류계에서의 염소화 Biphenyls의 분포특성)

  • LEE Dong-In;Ok Gon;YANG Han-Soeb;CHANG Yoon-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.679-686
    • /
    • 1997
  • In order to investigate the distribution characteristics of polychlorinated Biphenyls (PCBs) at the southern of Korean East Sea, vertical measurements of temperature, salinity, DO and PCBs were performed by each depth of 5 stations during August - October 1996. Thermocline and salinocline were generally existed at depth of 30 m and water mass current of midwater in the southern of Korean East Sea was distributed below 30 m depth. The distribution of surface water mass in this area was extended to Tsusima area from the southern offshore of the Korean last Sea. In August 1996, concentration range of PCBs had $0.22\~0.36\;ng/\ell$ at surface layer and their concentrations at near Tsusima offshore were relatively decreased. Total mean concentration of PCBs was $0.29\;ng/\ell$ in the sea surface and $0.31\;ng/\ell$ in the middle layer. PCBs seemed to correlate well with suspended particles. And vortical and horizontal distribution of their concentrations showed comparatively uniform pattern. Relatively high compositional ratio of Di- and Tri-PCBs could be found at the sea surface, while compositional ratio of Penta-PCBs dominates over other congener at deep layer.

  • PDF

The Influence of Environmental Variables on Distribution of Macrobenthic Community in Salt Marsh Vegetation in Donggeomdo, Ganghwa on the West Coast of Korea (강화 동검도 염습지 식생의 대형저서동물군집 분포에 영향을 주는 환경요인)

  • Lee, Hyung-Gon;Yoon, Kon-Tak;Park, Heung-Sik;Hong, Jae-Sang;Lee, Jae-Hac
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.115-128
    • /
    • 2016
  • This study examined the relationship between macrobenthic distribution patterns and environmental factors in salt marsh vegetation in Donggeomdo, Ganghwa on the west coast of Korea. Nine stations were fixed on a transect across the salt marsh vegetation, and field sampling was carried out monthly from July 1997 to June 1998. A total of 38 species of macrobenthos were recorded: each of faunal groups, 13 (34.2%) Arthropoda, 12 (31.6%) Polychaeta, 8 (21.1%) Mollusca, and 5 (13.2%) others. The mean density was $2,659individuals/m^2$, with a mean biomass of $178.6gWWt/m^2$. Mollusca dominated in terms of abundance and biomass, with a mean density of $2,172individuals/m^2$ (81.7%) and a mean biomass of $131.9gWWt/m^2$ (73.9%). The number of species decreased in winter (January-February), while mean density increased in the spring (May-June). The biomass was relatively in Summer and Fall (July-November), than any other season. The number of species was high in pure stands of Suaeda japonica in the lower salt marsh vegetation, and the mean density and biomass were high in mixed halophyte communities in the middle salt marsh vegetation. Two Mollusca, the bivalve Glauconome chinensis and gastropod Assiminea lutea, were dominant. The densities of these two species were high in mixed halophyte communities in the middle salt marsh vegetation. Non-metric multi-dimensional scaling (nMDS) showed that the study area could be divided into four groups corresponding to the vertical distribution of tidal levels and halophytes. Spearman's rank correlation revealed that the distribution patterns and community structure of macrobenthos were related to environment variables such as salinity of the substrates, exposure time, and grain size compositions of the sediment in the salt marsh vegetation. Particularly, the distribution and density of some dominant species showed differences along the vertical distributions of halophytes.

Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system (인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

Temporal and Spatial Distributions of Basic Water Quality in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역에서 기초수질의 시공간적 분포특성)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Oh, Young-Taek;Heo, Woo-Myoung;Lee, Yun-Kyoung;Park, Yong-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.206-215
    • /
    • 2008
  • Temporal and spatial distributions of salinity, temperature, dissolved oxygen (DO), and turbidity were investigated at seven sites in the upper regions of brackish Lake Sihwa with a limited water exchange, from March to October 2005. During the study period, salinity and temperature varied $0.1{\sim}29.9\;psu$ and $4.7{\sim}28.1^{\circ}C$, respectively, depending on seasons and sites sampled. A distinct halocline profile showing the maximum density gradient (difference over $20\;psu\;m^{-1}$ between surface and bottom layers) was observed during the rainy season, due to the decrease of salinity in surface layers by freshwater inflow. This result implies that rainfall event is the important factor forming the halocline. On the other hand, the depth and location of haloeline varied with the amount of seawater through the sluice gates and the operation systems (inflow or outflow). High DO (over 300% saturation) was observed at surface layer above the halocline in April when red tide occurred, whereas low DO (below 20% saturation) was at the bottom layer below the halocline in the rainy season. Turbidity ranged $1.5{\sim}80.3\;NTU$ showing the maximum turbidity at the layers above or upper the halocline. As a result, the distributions of DO and turbidity in the upper regions of brackish Lake Sihwa were largely affected by the variation of salinity. Also, when the halocline was formed, the water quality between upper and lower water layers may be expected completely different. This study suggests that the physicochemical characteristics of water in the brackish regions are closely associated with the causes of eutrophication such as red tide and DO deficit.

Effect of Freshwater Discharge from a Water Reservoir on the Flow Circulation in the Semi-Closed Harbor (유수지로부터의 담수 방류가 항 내 해수순환에 미치는 영향)

  • Choi, Jae Yoon;Kim, Jong Wook;Lee, Hye Min;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • To investigate the effect of freshwater discharge on the seawater circulation in the semi-closed harbor, a 3-D hydrodynamic model was applied to the International Ferry Terminal (IFT). The model run is conducted for 45 days (from May 15 to June 30, 2020), and the reproducibility of the model for time-spatial variability of current velocity and salinity was verified by comparison with model results and observation data. There are two sources of freshwater towards inside of the IFT: Han River and water reservoir located in the eastern part of IFT. In residual current velocity results, the two-layer circulation (the seaward flow near surface and the landward flow near bottom)derived from the horizontal salinity gradient in only considering the discharge from a Han River is more developed than that considering both the Han River and water reservoir. This suggests that the impact of freshwater from the reservoir is greater in the IFT areas than that from a Han River. Additionally, the two-layer circulation is stronger in the IFT located in southern part than Incheon South Port located in northern part. This process is formed by the interaction between tidal current propagating into the port and freshwater discharge from a water reservoir, and flow with a low salinity (near 0 psu) is delivered into the IFT. This low salinity distribution reinforces the horizontal stratification in front of the IFT, and maintains a two-layer circulation. Therefore, local sources of freshwater input are considered to estimate for mass transport process associated with the seawater circulation within the harbor and It is necessary to perform a numerical model according to the real-time freshwater flow rate discharged.