• 제목/요약/키워드: Salinity distribution

검색결과 534건 처리시간 0.027초

동중국해역에서 양자강 유출량 변화에 따른 저염확산 수치실험 (Numerical Experiment of Low Salinity Due to the Variation of Yangtze River Discharge in East China Sea)

  • 황재동;조규대;정희동;박성은
    • 해양환경안전학회지
    • /
    • 제9권2호
    • /
    • pp.53-57
    • /
    • 2003
  • 한반도 서남부해역은 하계 양자강의 유출에 의해 저염분 현상이 발생한다. 중국 대통(Datong)에서 지난 65년(1922­1986)간 장기관측한 자료에 의하면 매년 양자강 유출량은 일정하지 않으며, 최대 유출량은 최소유출량의 2배 이상이 됨을 보여주고 있다. 따라서 양자강의 유출량을 달리하여 저염확산을 수치모델로 연구하고자 하였다. 수치모델은 POM(Princeton Ocean Model)을 사용하였다. POM은 연직적으로 $\sigma$­좌표계를 사용하는 3차원 해양순환모델이다. 모델 수행 후 연구해역내 대륙사면에서 유속이 강하게 나타났다. 또한 제주도 서쪽을 통해 북상하여 황해중앙부로 들어가는 흐름이 있으며, 대륙연안을 따라 남하하는 흐름이 있음을 알 수 있다. 양자강 유출량을 부여한 후 수행한 모델의 결과를 보면 양자강 유출량이 많을수록 저염분역이 제주도에 가깝게 나타남을 알 수 있다.

  • PDF

Water Masses and Salinity in the Eastern Yellow Sea from Winter to Spring

  • Park, Moon-Jin;Oh, Hee-Jin
    • Ocean and Polar Research
    • /
    • 제26권1호
    • /
    • pp.65-75
    • /
    • 2004
  • In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.

3D Numerical Modelling of Water Flow and Salinity Intrusion in the Vietnamese Mekong Delta

  • Lee, Taeyoon;Nguyen, Van Thinh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.207-207
    • /
    • 2021
  • The Vietnamese Mekong Delta(VMD) covers an area of 62,250 km2 in the lowest basin of the Mekong Delta where more than half of the country's total rice production takes place. In 2016, an estimated 1.29 million tonnes of Vietnam's rice were lost to the country's biggest drought in 90 year and particularly in VMD, at least 221,000 hectares of rice paddies were hit by the drought and related saltwater intrusion from the South China Sea. In this study, 3D numerical simulations using Delft3D hydrodynamic models with calibration and validation process were performed to examine flow characteristics, climate change scenarios, water level changes, and salinity concentrations in the nine major estuaries and coastal zones of VMD during the 21st century. The river flows and their interactions with ocean currents were modeled by Delft3D and since the water levels and saltwater intrusion in the area are sensitive to the climate conditions and upstream dam operations, the hydrodynamic models considered discharges from the dams and climate data provided by the Coupled Model Intercomparison Project Phase 6(CMIP6). The models were calibrated and verified using observational water levels, salinity distribution, and climate change data and scenarios. The results agreed well with the observed data during calibration and validation periods. The calibrated models will be used to make predictions about the future salinity intrusion events, focusing on the impacts of sea level rise due to global warming and weather elements.

  • PDF

남해안 봉강천과 미룡천 하구에서 기수갈고둥의 분포 및 서식지 환경 특성 (Habitat Environments and Spatiotemporal Distribution of Clithon retropictum at the Estuaries of Bonggang and Miryoung Streams in the Southern Coast of Korea)

  • 장건강;김민섭;조수근;이원호;김형섭
    • Ocean and Polar Research
    • /
    • 제43권3호
    • /
    • pp.127-140
    • /
    • 2021
  • At the estuaries of Bonggang and Miryong streams in the Korean southern coast, the spatiotemporal distribution and habitat environment of a nerite snail, Clithon retropictum (Gastropoda: Neritidae), which has been assigned as a legally protected species of Korea, were explored. Physicochemical environmental factors such as water temperature, salinity, tidal level distribution as well as biotic environments (chlorophyll-a concentration and epilithic microalgae composition) were monitored every month. The relationships between the environmental factors and spatiotemporal distribution of the nerite snail population were analyzed. Water temperature, salinity, and water level varied by season and lunar tidal rhythm. The spatiotemporal distribution of the nerite snail was mostly related to water salinity. Among epilithic algae which were the priority prey of snails, blue-green algae and green algae dominated in summer and autumn, while diatoms predominated during winter and spring. Chlorophyll-a concentration was highly and positively correlated with the population density of the nerite snail. The correlation coefficients were different depending on the taxon (Family) of epilithic algae. The mean population density was 302.2 inds m-2 and 271.8 inds m-2 in Bonggang Stream and Miryong Stream, respectively. The egg capsules of the nerite snail in the two habitats were observed from March (in Bonggang Stream) or April (in Miryong Stream) to August, and newly hatched juveniles recruited in the habitats from August were assessed with regard to frequency distributions of shell width. The occurrence of large-sized snails in upper stream reaches of both Bonggang and Miryong indicated the movement of spats from the mouth to the upper reaches during the whole life cycle.

Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR

  • Kang, Hee Chang;Jeong, Hae Jin;Ok, Jin Hee;You, Ji Hyun;Jang, Se Hyeon;Lee, Sung Yeon;Lee, Kyung Ha;Park, Jae Yeon;Rho, Jung-Rae
    • ALGAE
    • /
    • 제34권2호
    • /
    • pp.111-126
    • /
    • 2019
  • The phototrophic dinoflagellate Biecheleriopsis adriatica is a small suessioid species characterized by a fragile thin wall. Although the morphology of this dinoflagellate is well established, there is currently little information available on its distribution and the environmental factors that influence this distribution. Thus, to investigate the spatial and seasonal distributions of the vegetative cells of B. adriatica in Korean waters, surface water samples were collected on a seasonal basis from 28 stations in the East, West, and South Sea of Korea and Jeju Island from April 2015 to October 2018, and abundances of the vegetative cells of B. adriatica were quantified using quantitative real-time polymerase chain reactions, for which we developed the species-specific primer and probe set. Simultaneously, major environmental parameters, including temperature, salinity, nutrient concentrations, and dissolved oxygen concentrations were measured. The vegetative cells of B. adriatica were detected at 20 of the 28 sampling stations: 19 stations in summer and 6 in autumn, although from no stations in either spring or winter. The ranges of water temperature and salinity at sites where this species was detected were $17.7-26.4^{\circ}C$ and 9.9-34.3, respectively, whereas those of nitrate and phosphate concentrations were not detectable-96.2 and $0.18-2.66{\mu}M$, respectively. Thus, the sites at which this species is found are characterized by a narrow range of temperature, but wide ranges of salinity and concentrations of nitrate and phosphate. The highest abundance of the vegetative cells of B. adriatica was $41.7cells\;mL^{-1}$, which was recorded in Jinhae Bay in July 2018. In Jinhae Bay, the abundance of vegetative cells was significantly positively correlated with the concentration of nitrate, but was negatively correlated with salinity. On the basis of these findings, it appears that the abundance of B. adriatica vegetative cells shows strong seasonality, and in Jinhae Bay, could be affected by the concentrations of nitrate.

동지나해의 두 해역에 있어서 미세플랑크톤의 분포(예보) (A PRELIMINARY REPORT ON THE DISTRIBUTION, OF MICROPLANKTON IN TWO DIFFERENT AREAS OF THE EAST CHINA SEA)

  • 최정신
    • 한국수산과학회지
    • /
    • 제11권3호
    • /
    • pp.123-127
    • /
    • 1978
  • Distributions of microplankton in two different regions of the East China Sea were studied based on the plankton samples collected by R. V. Umitaka Maru of Fisheries University of Tokyo, Japan in September, 1975. The abundance distribution and species composition of the two areas were interpreted with their temperature-salinity properties. The two areas aye characterized by differences in the depth of thermocline, the nature of surface and bottom waters, and the abundance and species composition of microplankton.

  • PDF

섬진강 하류계에서의 염분도에 따른 윤충류 군집의 변화 (Change of Rotifers Community by Salinity in the Lower Seomjin River System, Korea)

  • 김광수;이종빈;이관식;유형빈
    • 생태와환경
    • /
    • 제33권2호통권90호
    • /
    • pp.162-175
    • /
    • 2000
  • 섬진강 하류계에 서식하고 있는 윤충류의 염분에 따른 분포를 파악하기 위해 1998년 2월부터 1999년 7월까지 12개 정점을 선정하여 매달 수평 채집하였다. 조사기간 중 출현한 윤충류는 27속 88종이었다. 월별 출현종의 분포로는 1998년 11월에 가장 많은 39종이 출현하였으며, 1998년 3월에 가장 적은 21종이 출현하였다. 우점종은 32종이었으며 대표적인 우점종은 4종(Keratella cochlearis cochlearis, K. cochlearis f. tecta, Ascomorpha saltans saltans, Asplanchna (s. str.) priodonta priodonta)이었다. 염분에 따른 출현 종의 분포를 보면 담수역(0${\sim}$0.5$\%{o}$)에서만 출현한 종은 36종, 빈염기수역과 중염기수역에서만 출현한 종은 각각 3종이었으며, 담수역과 빈염기수역에 걸쳐 출현한 종은 15종, 담수역, 빈염기수역, 중염기수역에 걸쳐 출현한 종은 27종 그리고 전 염분의 범위에서 출현한 종은 2종(Asplanchna (s. str.)priodonta priodonta, Synchaeta oblonga)이었다. 염분 분포에 따른 생물량은 15.1${\sim}$20.0$\%{o}$ 의 범위에서 평균 16,259 ind./m$^{3}$으로 최고량을, 25${\sim}$28.0$\%{o}$ 의 범위에서 1,273 ind./m$^{3}$으로 최소량을 기록하였다. 담수역(정점 1-정점 4)에서 윤충류의 생물량에 영향을 주는 환경요인은 BOD (74.32%), COD (72.15%), 전도도 (69.77%), 염소이온(65.87%) 그리고 엽록소 a (58.27%)가 양의 영향으로 작용하였으며, 기수역(정점 5-정점 12)에서는 염소이온(9.11%), 총 인(7.67%), 엽록소 a (6.20%)가 양의 영향을 나타내었다.

  • PDF

하계 한국 남부해역 표층수의 탄산계 완충역량 (The Buffer Capacity of the Carbonate System in the Southern Korean Surface Waters in Summer)

  • 황영빈;이동섭
    • 한국해양학회지:바다
    • /
    • 제27권1호
    • /
    • pp.17-32
    • /
    • 2022
  • 2020년 8월 한국 남부해역 해양 조사를 통해 수집된 수온, 염분, 용존무기탄소(DIC), 총알칼리도(TA) 자료를 사용해서 표층수의 완충역량을 정량화하였다. 기존의 Revelle 인자의 문제점을 보완한 여섯 가지 완충 인자의 지리적 분포와 변동성을 분석하고, 수문학적 요인인 수온, 염분과의 관계를 논의하였다. 모든 완충인자들은 수괴에 따른 공간적 분포를 보였다: 완충역량은 용승이 발생했던 동해표층혼합수(ESMW)와 남해표층혼합수(SSMW)에서 낮았으며, 황해표층수(YSSW)에서는 중간값을 보였다. 또한 고온인 대마난류수(TWC)와 장강희석수(CDW) 순으로 크게 나타났다. 이는 하계의 장강유출수가 연구해역의 완충역량을 강화하는 것을 의미하며, 높은 수온과 생물학적 생산력, 하계의 성층화에 의한 혼합 약화가 원인으로 판단된다. 수온-완충역량은 수괴와 상관없이 유의한 양의 상관관계(R2=0.79)를 보였으나 염분-완충역량은 약한 음의 상관관계(R2=0.30)를 보였다. 높은 수온은 열역학적 과정인 기체 교환과 탄산계 화학종 분배를 통해 완충역량을 강화한다. 염분의 경우는 연구해역의 표층 염분이 증발이나 강수가 아닌 국지적인 담수의 유입과 용승수와의 혼합에 의해 변하므로 염분과 완충역량의 관계가 역전된다.