Browse > Article
http://dx.doi.org/10.4490/algae.2019.34.5.25

Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR  

Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Jang, Se Hyeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Lee, Sung Yeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Lee, Kyung Ha (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Park, Jae Yeon (Advanced Institutes of Convergence Technology)
Rho, Jung-Rae (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Publication Information
ALGAE / v.34, no.2, 2019 , pp. 111-126 More about this Journal
Abstract
The phototrophic dinoflagellate Biecheleriopsis adriatica is a small suessioid species characterized by a fragile thin wall. Although the morphology of this dinoflagellate is well established, there is currently little information available on its distribution and the environmental factors that influence this distribution. Thus, to investigate the spatial and seasonal distributions of the vegetative cells of B. adriatica in Korean waters, surface water samples were collected on a seasonal basis from 28 stations in the East, West, and South Sea of Korea and Jeju Island from April 2015 to October 2018, and abundances of the vegetative cells of B. adriatica were quantified using quantitative real-time polymerase chain reactions, for which we developed the species-specific primer and probe set. Simultaneously, major environmental parameters, including temperature, salinity, nutrient concentrations, and dissolved oxygen concentrations were measured. The vegetative cells of B. adriatica were detected at 20 of the 28 sampling stations: 19 stations in summer and 6 in autumn, although from no stations in either spring or winter. The ranges of water temperature and salinity at sites where this species was detected were $17.7-26.4^{\circ}C$ and 9.9-34.3, respectively, whereas those of nitrate and phosphate concentrations were not detectable-96.2 and $0.18-2.66{\mu}M$, respectively. Thus, the sites at which this species is found are characterized by a narrow range of temperature, but wide ranges of salinity and concentrations of nitrate and phosphate. The highest abundance of the vegetative cells of B. adriatica was $41.7cells\;mL^{-1}$, which was recorded in Jinhae Bay in July 2018. In Jinhae Bay, the abundance of vegetative cells was significantly positively correlated with the concentration of nitrate, but was negatively correlated with salinity. On the basis of these findings, it appears that the abundance of B. adriatica vegetative cells shows strong seasonality, and in Jinhae Bay, could be affected by the concentrations of nitrate.
Keywords
abundance; molecular method; nationwide distribution; protist; Suessiaceae;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Menden-Deuer, S. & Montalbano, A. L. 2015. Bloom formation potential in the harmful dinoflagellate Akashiwo sanguinea: clues from movement behaviors and growth characteristics. Harmful Algae 47:75-85.   DOI
2 Moestrup, O., Lindberg, K. & Daugbjerg, N. 2009. Studies on woloszynskioid dinoflagellates V. ultrastructure of Biecheleriopsis gen. nov., with description of Biecheleriopsis adriatica sp. nov. Phycol. Res. 57:221-237.   DOI
3 Olenina, I., Wasmund, N., Hajdu, S., Jurgensone, I., Gromisz, S., Kownacka, J., Toming, K., Vaiciūtė, D. & Olenin, S. 2010. Assessing impacts of invasive phytoplankton: the Baltic Sea case. Mar. Pollut. Bull. 60:1691-1700.   DOI
4 Park, M. G., Yih, W. & Coats, D. W. 2004. Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J. Eukaryot. Microbiol. 51:145-155.   DOI
5 Park, T. G., Lim, W. A., Park, Y. T., Lee, C. K. & Jeong, H. J. 2013. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30(Suppl. 1):S131-S143.   DOI
6 San Diego-McGlone, M. L., Azanza, R. V., Villanoy, C. L. & Jacinto, G. S. 2008. Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Mar. Pollut. Bull. 57:295-301.   DOI
7 Jeong, H. J., Jang, S. H., Moestrup, O., Kang, N. S., Lee, S. Y., Potvin, E. & Noh, J. H. 2014a. Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea. Algae 29:75-99.   DOI
8 Jeong, H. J., Kang, H. C., You, J. H. & Jang, S. H. 2018a. Interactions between the newly described small- and fast-swimming mixotrophic dinoflagellate Yihiella yeosuensis and common heterotrophic protists. J. Eukaryot. Microbiol. 65:612-626.   DOI
9 Jeong, H. J., Lee, K. H., Yoo, Y. D., Kang, N. S., Song, J. Y., Kim, T. H., Seong, K. A., Kim, J. S. & Potvin, E. 2018b. Effects of light intensity, temperature, and salinity on the growth and ingestion rates of the red-tide mixotrophic dinoflagellate Paragymnodinium shiwhaense. Harmful Algae 80:46-54.   DOI
10 Jeong, H. J., Lee, S. Y., Kang, N. S., Yoo, Y. D., Lim, A. S., Lee, M. J., Kim, H. S., Yih, W., Yamashita, H. & LaJeunesse, T. C. 2014b. Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the sole representative of Symbiodinium clade E. J. Eukaryot. Microbiol. 61:75-94.   DOI
11 Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.   DOI
12 Jang, S. H., Jeong, H. J., Moestrup, O., Kang, N. S., Lee, S. Y., Lee, K. H. & Seong, K. A. 2017. Yihiella yeosuensis gen. et sp. nov. (Suessiaceae, Dinophyceae), a novel dinoflagellate isolated from the coastal waters of Korea. J. Phycol. 53:131-145.   DOI
13 Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153.   DOI
14 Scholin, C. A., Herzog, M., Sogin, M. & Anderson, D. M. 1994. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 30:999-1011.   DOI
15 Selina, M. S. & Levchenko, E. V. 2011. Species composition and morphology of dinoflagellates (Dinophyta) of epiphytic assemblages of Peter the Great Bay in the Sea of Japan. Russ. J. Mar. Biol. 37:23-32.   DOI
16 Shumway, S. E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquac. Soc. 21:65-104.   DOI
17 Siano, R., Kooistra, W. H. C. F., Montresor, M. & Zingone, A. 2009. Unarmoured and thin-walled dinoflagellates from the Gulf of Naples, with the description of Woloszynskia cincta sp. nov. (Dinophyceae, Suessiales). Phycologia 48:44-65.   DOI
18 Singh, S. P. & Singh, P. 2015. Effect of temperature and light on the growth of algae species: a review. Renew. Sustain. Energy Rev. 50:431-444.   DOI
19 Smayda, T. J. & Reynolds, C. S. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. J. Sea Res. 49:95-106.   DOI
20 Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. 2017. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 9:311-335.   DOI
21 Takahashi, K., Sarai, C. & Iwataki, M. 2014. Morphology of two marine woloszynskioid dinoflagellates, Biecheleria brevisulcata sp. nov. and Biecheleriopsis adriatica (Suessiaceae, Dinophyceae), from Japanese coasts. Phycologia 53:52-65.   DOI
22 Johnson, M. D. 2015. Inducible mixotrophy in the dinoflagellate Prorocentrum minimum. J. Eukaryot. Microbiol. 62:431-443.   DOI
23 Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu, J. -H., Kim, S. Y., Park, J. Y. & Kim, K. Y. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130.   DOI
24 Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91.   DOI
25 Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan bay, Korea in 2004-2005: I. daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88.   DOI
26 Kang, H. C., Jeong, H. J., Kim, S. J., You, J. H. & Ok, J. H. 2018. Differential feeding by common heterotrophic protists on 12 different Alexandrium species. Harmful Algae 78:106-117.   DOI
27 Kang, N. S., Jeong, H. J., Moestrup, O., Lee, S. Y., Lim, A. S., Jang, T. Y., Lee, K. H., Lee, M. J., Jang, S. H., Potvin, E., Lee, S. K. & Noh, J. H. 2014. Gymnodinium smaydae n. sp., a new planktonic phototrophic dinoflagellate from the coastal waters of western Korea: morphology and molecular characterization. J. Eukaryot. Microbiol. 61:182-203.   DOI
28 Tillmann, U. 2004. Interactions between planktonic microalgae andprotozoan grazers. J. Eukaryot. Microbiol. 51:156-168.   DOI
29 Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418.   DOI
30 Telesh, I. V., Schubert, H. & Skarlato, S. O. 2016. Ecological niche partitioning of the invasive dinoflagellate Prorocentrum minimum and its native congeners in the Baltic Sea. Harmful Algae 59:100-111.   DOI
31 Warner, M. E., LaJeunesse, T. C., Robison, J. D. & Thur, R. M. 2006. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol. Oceanogr. 51:1887-1897.   DOI
32 Luo, Z., Yang, W., Xu, B., Zheng, B. & Gu, H. 2015. Morphology, ultrastructure, and phylogeny of Protodinium simplex and Biecheleriopsis cf. adriatica (Dinophyceae) from the China Sea. Nova Hedwigia 101:251-268.   DOI
33 Lee, S. Y., Jeong, H. J., Kwon, J. E., You, J. H., Kim, S. J., Ok, J. H., Kang, H. C. & Park, J. Y. 2019. First report of the photosynthetic dinoflagellate Heterocapsa minima in the Pacific Ocean: morphological and genetic characterizations and the nationwide distribution in Korea. Algae 34:7-21.   DOI
34 Lee, S. Y., Jeong, H. J., Seong, K. A., Lim, A. S., Kim, J. H., Lee, K. H., Lee, M. J. & Jang, S. H. 2017b. Improved real-time PCR method for quantification of the abundance of all known ribotypes of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides by comparing 4 different preparation methods. Harmful Algae 63:23-31.   DOI
35 Lindberg, K., Moestrup, O. & Daugbjerg, N. 2005. Studies on woloszynskioid dinoflagellates I: Woloszynskia coronata re-examined using light and electron microscopy and partial LSU rDNA sequences, with description of Tovellia gen. nov. and Jadwigia gen. nov. (Tovelliaceae fam. nov.). Phycologia 44:416-440.   DOI
36 Litaker, R. W., Vandersea, M. W., Faust, M. A., Kibler, S. R., Nau, A. W., Holland, W. C., Chinain, M., Holmes, M. J. & Tester, P. A. 2010. Global distribution of ciguatera causing dinoflagellates in the genus Gambierdiscus. Toxicon 56:711-730.   DOI
37 Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol. 39:754-761.   DOI
38 Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491-499.   DOI
39 Kang, N. S., Jeong, H. J., Yoo, Y. D., Yoon, E. Y., Lee, K. H., Lee, K. & Kim, G. 2011. Mixotrophy in the newly described phototrophic dinoflagellate Woloszynskia cincta from western Korean waters: feeding mechanism, prey species and effect of prey concentration. J. Eukaryot. Microbiol. 58:152-170.   DOI
40 Kang, N. S., Jeong, H. J., Moestrup, O., Shin, W., Nam, S. W., Park, J. Y., De Salas, M. F., Kim, K. W. & Noh, J. H. 2010. Description of a new planktonic mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. from the coastal waters off western Korea: morphology, pigments, and ribosomal DNA gene sequence. J. Eukaryot. Microbiol. 57:121-144.   DOI
41 Kang, W. & Wang, Z. -H. 2018. Identification of a marine woloszynskioid dinoflagellate Biecheleriopsis adriatica and germination of its cysts from southern Chinese coasts. J. Environ. Sci. 66:246-254.   DOI
42 Kibbe, W. A. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35(Suppl 2):W43-W46.   DOI
43 Kremp, A., Tamminen, T. & Spilling, K. 2008. Dinoflagellate bloom formation in natural assemblages with diatoms: nutrient competition and growth strategies in Baltic spring phytoplankton. Aquat. Microb. Ecol. 50:181-196.   DOI
44 LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R. & Santos, S. R. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28:2570-2580.   DOI
45 Landsberg, J. H. 2002. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10:113-390.   DOI
46 Correa, A. M. S., McDonald, M. D. & Baker, A. C. 2009. Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar. Biol. 156:2403-2411.   DOI
47 Lee, K. H., Jeong, H. J., Kim, H. J. & Lim, A. S. 2017a. Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity. Algae 32:139-153.   DOI
48 Adolf, J. E., Bachvaroff, T. R., Deeds, J. R. & Place, A. R. 2015. Ichthyotoxic Karlodinium veneficum (Ballantine) J Larsen in the upper Swan River estuary (Western Australia): ecological conditions leading to a fish kill. Harmful Algae 48:83-93.   DOI
49 Benico, G. A., Takahashi, K., Lum, W. M., Yniguez, A. T., Azanza, R. V., Leong, S. C. Y., Lim, P. T. & Iwataki, M. 2019. First report of Biecheleriopsis adriatica in Bolinao, Northwestern Philippines and its wide distribution in Southeast Asia and adjacent waters. Philipp. J. Nat. Sci. 24:34-41.
50 Bowers, H. A., Tengs, T., Glasgow, H. B. Jr., Burkholder, J. M., Rublee, P. A. & Oldach, D. W. 2000. Development of realtime PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl. Environ. Microbiol. 66:4641-4648.   DOI
51 Hansen, P. J. 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58:203-214.   DOI
52 Daugbjerg, N., Hansen, G., Larsen, J. & Moestrup, O. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302-317.   DOI
53 Dzhembekova, N., Moncheva, S., Ivanova, P., Slabakova, N. & Nagai, S. 2018. Biodiversity of phytoplankton cyst assemblages in surface sediments of the Black Sea based on metabarcoding. Biotechnol. Biotechnol. Equip. 32:1507-1513.   DOI
54 Godhe, A., Asplund, M. E., Harnstrom, K., Saravanan, V., Tyagi, A. & Karunasagar, I. 2008. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl. Environ. Microbiol. 74:7174-7182.   DOI
55 Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32:79-99.   DOI
56 Hallegraeff, G. M. 1998. Transport of toxic dinoflagellates via ships' ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies. Mar. Ecol. Prog. Ser. 168:297-309.   DOI
57 Heaney, S. I. & Eppley, R. W. 1981. Light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture. J. Plankton Res. 3:331-344.   DOI
58 Jang, S. H., Jeong, H. J., Moestrup, O., Kang, N. S., Lee, S. Y., Lee, K. H., Lee, M. J. & Noh, J. H. 2015. Morphological, molecular and ecophysiological characterization of the phototrophic dinoflagellate Biecheleriopsis adriatica from Korean coastal waters. Eur. J. Phycol. 50:301-317.   DOI