• Title/Summary/Keyword: Safety system

검색결과 17,705건 처리시간 0.042초

관리대상 화학물질의 지정 및 관리체계 차등화를 통한 효율적 대학 연구실 관리에 대한 연구 (A Study on the Efficient Management of University Laboratories through Differential Designation of Chemical Substances and Classification of Management System)

  • 김덕한;김민선;이익모
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.61-70
    • /
    • 2022
  • In spite of lab safety act for over 10 years, over 100 safety accidents in the laboratory have been constantly occurring. The ideal safety management system is to prevent accidents by differential classifying and managing laboratory regulatory materials according to the risk level. In order to approach this system, in-depth interviews with safety managers were first conducted to identify the current status of safety management in domestic university laboratories. And then through comparative analysis of safety management systems in domestic and foreign laboratories, a new regulatory substance classification standard based on the analysis of the hazards and the classification of risk grades, and a safety management system are proposed. From this study, it will contribute to the creation of a safe laboratory environment by differential classification and management laboratory regulatory materials based on the risk level.

항공안전투자 공시제도 현황 분석 및 향후 발전 방안 연구 (Analyzing the Public Disclosure of Aviation Safety Investment System and Studying Future Development Strategies)

  • 남승주;이엘리사;송운경
    • 한국항공운항학회지
    • /
    • 제32권2호
    • /
    • pp.72-81
    • /
    • 2024
  • Korean aviation authority required air service providers to submit public disclosure of aviation safety investment to encourage proactive and voluntary safety investments. In 2023, two airport operators and seventeen airlines disclosed their safety investment results and plans for the first time. This study aims to examine and analyze the current status of the disclosure system, identify insights for its development, and set directions for the future. Safety investments by airport operators decreased by 14.3% in 2022 compared to 2021 due to decreased aviation demand. Airline increased their safety investment by 46% to 4 trillion won, investing heavily in MRO and aircraft replacement, leading to a decrease in the average fleet age by 0.8 years. FSCs have shown a significantly higher level of safety investment compared to LCCs. However, LCCs show higher safety investment relative to revenue. It is necessary to consider the characteristics of each operator as well as the scale when comparing safety investments. A roadmap is suggested based on the importance of disclosure items for the strategic approach and improvement measures for the aviation safety investment disclosure system.

공정안전향상을 위한 Safety Integrity Level의 적용 방향 (Towards the Application of Safety Integrity Level for Improving Process Safety)

  • 권혁면;박희철;천영우;박진형
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.64-69
    • /
    • 2012
  • The concept of SIL is applied in the most of all standards relating to functional system safety. However there are problems for the people to apply SIL to their plants. as these standards don't include sufficient informations. In this regards, this paper will suggest the direction of SIL application and concept based on IEC 61508 and IEC 61511. A Safety Integrity Level(SIL) is the discrete level(one out of possible fours), corresponding to a range of the probability of an E/E/PE (Electric/Electrical/Programmable Electrical) safety-related system satisfactorily performing the specific safety functions under all the stated conditions within a stated period of time. SIL can be divided into the target SIL(or required SIL) and the result SIL. The target SIL is determined by the risk analysis at the analysis phase of safety lifecycle and the result SIL is calculated during SIL verification at the realization phase of safety lifecycle. The target SIL is determined by the risk analysis like LOPA(Layer Of Protection Analysis), Risk Graph, Risk Matrix and the result SIL is calculated by HFT(Hardware Fault Tolerance), SFF(Safe Failure Fraction) and PFDavg(average Probability of dangerous Failure on Demand). SIL is applied to various areas such as process safety, machinery(road vehicles, railway application, rotating equipment, etc), nuclear sector which functional safety is applied. The functional safety is the part of the overall safety relating to the EUC and the EUC control system that depends on the correct functioning of the E/E/PE safety-related systems and other risk reduction measures. SIL is applied only to the functional safety of SIS(Safety Instrumented System) in safety. EUC is the abbreviation of Equipment Under Control and is the equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities.

실사격 시험시스템의 효율적인 개발을 위해 안전도 반영을 통해 개선된 시스템 성숙도 모델에 관한 연구 (On an Enhanced Model of System Readiness Level by Incorporating Safety for the Development of Live Fire Test Systems)

  • 예성혁;이재천
    • 대한안전경영과학회지
    • /
    • 제17권3호
    • /
    • pp.195-204
    • /
    • 2015
  • The live fire test has been playing a critical role in evaluating the goals-to-meet of the weapon systems which utilize the power of explosives. As such, the successful development of the test systems therein is quite important. The test systems development covers that of ranges and facilities including system-level key components such as mission control, instrumentation or observation, safety control, electric power, launch pad, and so on. In addition, proper operational guidelines are needed with well-trained test and operation personnel. The emerging weapon systems to be deployed in future battle field would thus have to be more precise and dynamic, smarter, thereby requiring more elaboration. Furthermore, the safety consideration is becoming more serious due to the ever-increasing power of explosives. In such a situation, development of live fire test systems seems to be challenging. The objective of the paper is on how to incorporate the safety and other requirements in the development. To achieve the goal, an architectural approach is adopted by utilizing both the system components relationship and safety requirement when advanced instrumentation technology needs to be developed and deteriorated components of the range are replaced. As an evaluation method, it is studied how the level of maturity of the test systems development can be assessed particularly with the safety requirement considered. Based on the concepts of both systems engineering and SoS (System-of-Systems) engineering process, an enhanced model for the system readiness level is proposed by incorporating safety. The maturity model proposed would be helpful in assessing the maturity of safety-critical systems development whereas the costing model would provide a guide on how the reasonable test resource allocation plan can be made, which is based on the live fire test scenario of future complex weapon systems such as SoS.

Occupational Exposure to Physical and Chemical Risk Factors: A Systematic Review of Reproductive Pathophysiological Effects in Women and Men

  • Soleiman Ramezanifar;Sona Beyrami;Younes Mehrifar;Ehsan Ramezanifar;Zahra Soltanpour;Mahshid Namdari;Noradin Gharari
    • Safety and Health at Work
    • /
    • 제14권1호
    • /
    • pp.17-30
    • /
    • 2023
  • The human reproductive system can be affected by occupational exposure to many physical and chemical risk factors. This study was carried out to review the studies conducted on the issue of the pathophysiological effects of occupational physical and chemical risk factors on the reproductive system of females and males. In this systematic review, the databases such as "Google Scholar," "Pub-Med," "Scopus," and "Web of Science" were used. Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA 2020), the studies included in our study were published between 2000 and 2021. In order to extract the required data, all sections of the articles were reviewed. Out of 57 articles we reviewed, 34 articles were related to field studies and 23 articles to clinical studies. Among them, 43 studies dealt with the pathophysiological effects of chemical agents, six studies dealt with the pathophysiological effects of physical factors, and 8 studies dealt with the pathophysiological effects of physicochemical factors on the human reproductive system. Physical (noise, heat, and radiofrequency radiation) and chemical (such as carbamate and organophosphate pesticides, benzene, toluene, xylene, formaldehyde, NO2, CS2, manganese, lead, nickel, and n-hexane) risk factors had pathophysiological effects on the human reproductive system. The presence of these risk factors in the workplace caused damage to the human reproductive system. The rate of these negative pathophysiological effects can be reduced by performing appropriate managerial, technical, and engineering measures in work environments.

경량전철 열차제어시스템의 위험요인 분석 (A Hazard Identification and Analysis for the Train Control System of Light Rail Transit)

  • 정의진;김양모
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권2호
    • /
    • pp.99-106
    • /
    • 2004
  • Train control system in LRT (Light Rail Transit) is developed as a part of "Light Rail Transit System Development Project". But there was no specific requirement representing the system safety. Because system safety must be ensured before the customization, we applied the system to a officially recognized specific procedure, such as "A Guideline to Ensure the Safety of Train Control System in Korea" that was officially announced by KNR (Korea National Railroad) in 2001. We should draw system safely requirement to guarantee system safety for the first time. In this paper, the hazard identification and analysis to derive the safety requirement on LRT train control system are carried out following the KNR guideline. To analyze hazard, we have to deduce system functions, identify related hazards, derive the effects of the hazards, analyze current risk, define the target risk of the system, and deduce the alternative plans to reduce the effects of the hazards. After the hazard analysis following the upper procedure, 30 hazards are identified and analysed. Especially detailed analysis on train collision that is a main hazard of the train control of system is specially carried out.

도시철도유지보수체계 시스템의 예방정비시스템에 대한 연구(I) (A study on the preventing equipment system of maintenance computerization system for Urban transit(I))

  • 이호용;박기준;안태기;김길동;한석윤
    • 한국철도학회논문집
    • /
    • 제6권2호
    • /
    • pp.108-113
    • /
    • 2003
  • The safety of staff, customers and of general Public in general viewed as one of the most important requirements in the urban transit. The maintenance computerization system for car of urban transit is a part of standardization and development of urban transit system, and We have been performed the establishment of maintenance computerization system from 2001 to 2005. The RAMS(reliability, availability, maintainability and safety) estimation for maintenance computerization system are utilized in a variety of computerization system for user's convenience and safety in maintenance. Ever since its inception though, the urban transit has searched for ways to improve reliability, availability, maintainability and safety of the railway subsystem. Provision of a reliable maintenance system include RAMS of the vehicles plays a very important role in achieving a safe system.

손상선박의 안전성 평가를 위한 통합시스템 개발 (Development of Integrated System for Safety Assessment of Damaged Ship)

  • 이순섭;이동곤
    • 한국CDE학회논문집
    • /
    • 제13권3호
    • /
    • pp.227-234
    • /
    • 2008
  • The number of marine accidents have been decreased since various equipments for navigation control have been introduced to the marine vessels. However, disastrous marine accidents such as ship collisions are occurred more frequently. Therefore, IMO(International Maritime Organization) is enforcing the design requirement of structural strength for marine vessel. Also EU countries are developing new design methodologies and design tools to suggest the design guidance which can minimize the damage of commercial vessels in case of marine collision accidents. In this study, an integrated design system for the safety assessment has been presented to enhance the safety of damaged ships in marine collision accidents. The architecture of system is described by use-cases and IDEF functional analysis. Then an integrated system for safety assessment of damaged ship which is considering both damage stability and structural safety has been developed to support the ship design in early stage.

국제 규격 접지시스템의 국내 적용을 위한 시뮬레이션 기반의 안전도 평가 방안 (Method for Safety-Decision to Apply International Standard Grounding Systems to Domestic Power System by Computer Simulation)

  • 이순;김정훈;박정욱
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.344-353
    • /
    • 2008
  • To apply the appropriate new grounding system to domestic power system, safety has to be guaranteed under the given circumstances. It is not possible to decide the safety of grounding systems by the experimental test because safety experiments directly relate to the human life and the installed electric machines. Therefore, the computer simulation program to decide the safety of grounding systems based on the IEC standard systems, has to be developed. This paper proposes the computer simulation based method to decide the safety of grounding system with the concepts of touch voltage, step voltage, human resistivity, and applied electric current according to the several conditions of human body located in the corresponding grounding systems. The proposed method is implemented by Matlab/Simulink and Visual C++ programming tools for its visualization.

철도안전을 위한 해외인증제도에 관한 연구 (International Accreditation System for Railway Safety)

  • 정원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제10권4호
    • /
    • pp.237-250
    • /
    • 2010
  • Railway safety aims to ensure that railways take appropriate action to limit the risk of injury to persons or damage to property, to acceptable levels. Accreditation system specifies railway safety requirements to be included in a railway safety management system by any organization seeking to demonstrate the ability to control the processes that determine the acceptability of railway safety activities. The objective of this research is to investigate the international accreditation system for railway safety management. The yield information is quite valuable to operate collaborative processes with all interfacing transport operators and undertakings to facilitate risk control across the railway system.