• Title/Summary/Keyword: Safety system

Search Result 17,705, Processing Time 0.047 seconds

Exploratory Study on Enhancing Cyber Security for Busan Port Container Terminals (부산항 컨테이너 터미널 사이버 보안 강화를 위한 탐색적 연구)

  • Do-Yeon Ha;Yul-Seong Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.437-447
    • /
    • 2023
  • By actively adopting technologies from the Fourth Industrial Revolution, the port industry is trending toward new types of ports, such as automated and smart ports. However, behind the development of these ports, there is an increasing risk of cyber security incidents and threats within ports and container terminals, including information leakage through cargo handling equipment and ransomware attacks leading to disruptions in terminal operations. Despite the necessity of research to enhance cyber security within ports, there is a lack of such studies in the domestic context. This study focuses on Busan Port, a representative port in South Korea that actively incorporates technology from the Fourth Industrial Revolution, in order to discover variables for improving cyber security in container terminals. The research results categorized factors for enhancing cyber security in Busan Port's container terminals into network construction and policy support, standardization of education and personnel training, and legal and regulatory factors. Subsequently, multiple regression analysis was conducted based on these factors, leading to the identification of detailed factors for securing and enhancing safety, reliability, performance, and satisfaction in Busan Port's container terminals. The significance of this study lies in providing direction for enhancing cyber security in Busan Port's container terminals and addressing the increasing incidents of cyber security attacks within ports and container terminals.

Research on the Development of Distance Metrics for the Clustering of Vessel Trajectories in Korean Coastal Waters (국내 연안 해역 선박 항적 군집화를 위한 항적 간 거리 척도 개발 연구)

  • Seungju Lee;Wonhee Lee;Ji Hong Min;Deuk Jae Cho;Hyunwoo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • This study developed a new distance metric for vessel trajectories, applicable to marine traffic control services in the Korean coastal waters. The proposed metric is designed through the weighted summation of the traditional Hausdorff distance, which measures the similarity between spatiotemporal data and incorporates the differences in the average Speed Over Ground (SOG) and the variance in Course Over Ground (COG) between two trajectories. To validate the effectiveness of this new metric, a comparative analysis was conducted using the actual Automatic Identification System (AIS) trajectory data, in conjunction with an agglomerative clustering algorithm. Data visualizations were used to confirm that the results of trajectory clustering, with the new metric, reflect geographical distances and the distribution of vessel behavioral characteristics more accurately, than conventional metrics such as the Hausdorff distance and Dynamic Time Warping distance. Quantitatively, based on the Davies-Bouldin index, the clustering results were found to be superior or comparable and demonstrated exceptional efficiency in computational distance calculation.

Study on AIS-EPIRB Design that Satisfies Revised IMO Performance Requirements (개정된 IMO 요건을 만족하는 AIS-EPIRB 설계에 관한 연구)

  • Chong-Lyong, Pag
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.137-145
    • /
    • 2024
  • Recently, there has been an increase in the use of Automatic Identification Systems. Class A AIS is used for ships engaged in international voyages, while Class B AIS is utilized for smaller vessels navigating domestic coastlines. AtoN AIS is used for aids to navigation, AIS is employed for search and rescue aircraft, and AIS-SART is widely used worldwide. Accordingly, in 2022, the Maritime Safety Committee(MSC) of the International Maritime Organization(IMO) revised the performance standards for the satellite emergency positioning radio beacon(EP IRB) to include AIS signals along with 121.5 MHz for aircraft, which has been used as a homing signal. It was recommended to use together as a homing signal, and from July 1, 2022, it was decided that AIS-EP IRB that satisfies the revised performance standards will replace the existing EP IRB. Consequently, starting from July 1, 2022, it was decided that AIS-EPIRB, which meets the revised performance standards, will replace the existing EP IRB. This paper aims to verify the feasibility of implementing AIS-EPIRB, which has not yet been developed domestically. To achieve this, a dedicated chipset for AIS was used to additionally implement frequency generation of 161.975 MHz and 162.025 MHz and GMSK modulation to satisfy the requirements.

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

Perception Survey for Demonstration Service using Drones (드론을 활용한 실증 서비스에 대한 인식 조사)

  • Jina Ok;Soonduck Yoo;Hyojin Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.125-132
    • /
    • 2024
  • The purpose of this study is to discover a drone utilization model tailored to local characteristics, propose directions for building a drone demonstration city based on demand surveys for drone activation, and suggest ways to utilize and support a drone application system. First, according to the survey results, there was a high understanding of and necessity for drone demonstration projects, particularly in addressing urban issues, which were deemed to have a significant impact. Second, based on the analysis of priorities and short- and long-term approaches, disaster-related tasks were evaluated as a priority, requiring an approach through medium- to long-term strategies. Third, it was noted that budgetary considerations emerged as the most critical issue during project implementation. Practitioners and experts expressed willingness to actively introduce drone-based technologies into their work when budget and technology were ready. Budgetary constraints were identified as the most significant obstacle to proper implementation, emphasizing the need for resolution. Fourth, the necessity of demand surveys during project development was identified in certain areas. Demand surveys were deemed essential for drone-based demonstration city construction, and a survey indicated that public leadership in this regard was also necessary. Fifth, concerning approaches in specific areas, the field of safety and disaster management was highlighted as the most crucial for application.

Analysis of Customer Evaluations on the Ethical Response to Service Failures of Foodtech Serving Robots (푸드테크 서빙로봇의 서비스 실패에 대한 직업윤리적 대응에 대한 고객 평가 분석)

  • Han, Jeonghye;Choi, Younglim;Jeong, Sanghyun;Kim, Jong-Wook
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • As the service robot market grows among the food technology industry, the quality of robot service that affects consumer behavioral intentions in the restaurant industry has become important. Serving robots, which are common in restaurants, reduce employee work through order and delivery, but because they do not respond to service failures, they increase customer dissatisfaction as well as increase employee work. In order to improve the quality of service beyond the simple function of receiving and serving orders, functions of recovery effort, fairness, empathy, responsiveness, and certainty of the process after service failure, such as serving employees, are also required. Accordingly, we assumed the type of failure of restaurant serving service as two internal and external factors, and developed a serving robot with a vocational ethics module to respond with a professional ethical attitude when the restaurant serving service fails. At this time, the expression and action of the serving robot were developed by adding a failure mode reflecting failure recovery efforts and empathy to the normal service mode. And by recruiting college students, we tested whether the service robot's response to two types of service failures had a significant effect on evaluating the robot. Participants responded that they were more uncomfortable with service failures caused by other customers' mistakes than robot mistakes, and that the serving robot's professional ethical empathy and response were appropriate. In addition, unlike the robot's favorability, the evaluation of the safety of the robot had a significant difference depending on whether or not a professional ethical empathy module was installed. A professional ethical empathy response module for natural service failure recovery using generative artificial intelligence should be developed and mounted, and the domestic serving robot industry and market are expected to grow more rapidly if the Korean serving robot certification system is introduced.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

Intelligent Transportation System (ITS) research optimized for autonomous driving using edge computing (엣지 컴퓨팅을 이용하여 자율주행에 최적화된 지능형 교통 시스템 연구(ITS))

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • In this scholarly investigation, the focus is placed on the transformative potential of edge computing in enhancing Intelligent Transportation Systems (ITS) for the facilitation of autonomous driving. The intrinsic capability of edge computing to process voluminous datasets locally and in a real-time manner is identified as paramount in meeting the exigent requirements of autonomous vehicles, encompassing expedited decision-making processes and the bolstering of safety protocols. This inquiry delves into the synergy between edge computing and extant ITS infrastructures, elucidating the manner in which localized data processing can substantially diminish latency, thereby augmenting the responsiveness of autonomous vehicles. Further, the study scrutinizes the deployment of edge servers, an array of sensors, and Vehicle-to-Everything (V2X) communication technologies, positing these elements as constituents of a robust framework designed to support instantaneous traffic management, collision avoidance mechanisms, and the dynamic optimization of vehicular routes. Moreover, this research addresses the principal challenges encountered in the incorporation of edge computing within ITS, including issues related to security, the integration of data, and the scalability of systems. It proffers insights into viable solutions and delineates directions for future scholarly inquiry.

Integrated Data Safe Zone Prototype for Efficient Processing and Utilization of Pseudonymous Information in the Transportation Sector (교통분야 가명정보의 효율적 처리 및 활용을 위한 통합데이터안심구역 프로토타입)

  • Hyoungkun Lee;Keedong Yoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.3
    • /
    • pp.48-66
    • /
    • 2024
  • According to the three amended Laws of the Data Economy and the Data Industry Act of Korea, systems for pseudonymous data integration and Data Safe Zones have been operated separately by selected agencies, eventually causing a burden of use in SMEs, startups, and general users because of complicated and ineffective procedures. An over-stringent pseudonymization policy to prevent data breaches has also compromised data quality. Such trials should be improved to ensure the convenience of use and data quality. This paper proposes a prototype system of the Integrated Data Safe Zone based on redesigned and optimized pseudonymization workflows. Conventional workflows of pseudonymization were redesigned by applying the amended guidelines and selectively revising existing guidelines for business process redesign. The proposed prototype has been shown quantitatively to outperform the conventional one: 6-fold increase in time efficiency, 1.28-fold in cost reduction, and 1.3-fold improvement in data quality.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.