• Title/Summary/Keyword: Safety evaluation method

Search Result 2,439, Processing Time 0.039 seconds

Development and validation of an analytical method for the quantification of 2,6-diisopropylnaphthalene in agricultural products using GC-MS/MS

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Chung, Yun mi;Choi, Ha na;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • An analytical method was developed and optimized for the quantification of a plant growth regulator, 2,6-diisopropylnaphthalene (2,6-DIPN), in agricultural products using gas chromatography-tandem mass spectrometry. The samples were extracted, partitioned, and were purified using a Florisil® cartridge. To validate the analytical method, its specificity, linearity, limit of detection (LOD) and limit of quantification (LOQ) of the instrument, LOQ of the analytical method (MLOQ), accuracy, and repeatability were considered. The method displayed excellent results during validation, and is suitable for the determination and quantification of the low residual levels of the analyte in the agricultural samples. All of the results with the optimized method were satisfactory and within the criteria ranges requested in the Codex Alimentarius Commission guidelines and the Ministry of Food and Drug Safety guidelines for pesticide residue analysis. The developed method is simple and accurate and can be used as a basis for safety management of 2,6-DIPN.

Application and Validation of an Optimal Analytical Method using QuEChERS for the determination of Tolpyralate in Agricultural Products (QuEChERS법을 활용한 농산물 중 제초제 Tolpyralate의 최적 분석법 선발 및 검증)

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kim, Ji-Young;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • BACKGROUND: Pesticides are broadly used to control weeds and pests, and the residues remaining in crops are managed in accordance with the MRLs (maximum residue limits). Therefore, an analytical method is required to quantify the residues, and we conducted a series of analyses to select and validate the quick and simple analytical method for tolpyralate in five agricultural products using QuEChERS (quick, easy, cheap, effective, rugged and safe) method and LC-MS/MS (liquid chromatography-tandem mass spectrometry). METHODS AND RESULTS: The agricultural samples were extracted with acetonitrile followed by addition of anhydrous magnesium sulfate, sodium chloride, disodium hydrogencitrate sesquihydrate and trisodium citrate dihydrate. After shaking and centrifugation, purification was performed with d-SPE (dispersive-solid phase extraction) sorbents. To validate the optimized method, its selectivity, linearity, LOD (limit of detection), LOQ (limit of quantitation), accuracy, repeatability, and reproducibility from the inter-laboratory analyses were considered. LOQ of the analytical method was 0.01 mg/kg at five agricultural products and the linearity of matrix-matched calibration were good at seven concentration levels, from 0.0025 to 0.25 mg/L (R2≥0.9980). Mean recoveries at three spiking levels (n=5) were in the range of 85.2~112.4% with associated relative standard deviation values less than 6.2%, and the coefficient of variation between the two laboratories was also below 13%. All optimized results were validated according to the criteria ranges requested in the Codex Alimentarius Commission (CAC) and Ministry of Food and Drug Safety (MFDS) guidelines. CONCLUSION: In conclusion, we suggest that the selected and validated method could serve as a basic data for detecting tolpyralate residue in imported and domestic agricultural products.

Development and Validation of a Simultaneous Analytical Method for the Detection of Mefentrifluconazole and Triticonazole Fungicide in Agricultural Crops (농산물 중 메펜트리플루코나졸 및 트리티코나졸 살균제의 동시 분석법 개발 및 검증)

  • Park, Ji-Su;Lee, Han Sol;Lee, Su Jung;Shin, Hye-Sun;Shim, Jae-Han;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.130-137
    • /
    • 2020
  • BACKGROUND: Mefentrifluconazole and triticonazole are the triazole fungicides. The maximum residue levels for agricultural products need to be set up. Therefore, development of the official analytical method for determination of mefentrifluconazole and triticonazole residues from agricultural crops was necessary due to safety management, and then a simultaneous analytical method was developed for the determination of mefentrifluconazole and triticonazole in agricultural crops. METHODS AND RESULTS: Samples were extracted using acetonitrile and purified using dispersive solid phase extraction, and then detected with liquid chromatograph-tandem mass spectrometry (LC-MS/MS). Matrix-matched calibration curves (0.0025-0.25 ㎍/mL) were linear into a sample extract with r2>0.99. For validation, the recovery test was carried out at three fortification levels (LOQ, 10 LOQ and 50 LOQ) from agricultural samples. The results for mefentrifluconazole and triticonazole ranged between 92.3 to 115.3% and 91.4 to 108.5%, respectively and RSD (relative standard deviation) values were also below 6.0%. Furthermore, inter-laboratory was conducted to validate the method. CONCLUSION: All values were corresponded with the criteria ranges requested by both the CODEX (CAC/GL 40-1993, 2003) and MFDS guidelines (2016). Therefore, the proposed method can be used as an official analytical method for determination of mefentrifluconazole and triticonazole (triazole fungicides) in the Republic of Korea.

Determination and Validation of an Analytical Method for Dichlobentiazox in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Dichlobentiazox 시험법 개발 및 검증)

  • Gu, Sun Young;Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kang, Sung Eun;Chung, Yun Mi;Choi, Ha Na;Yoon, Sang Soon;Jung, Young-Hyun;Yoon, Hae Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.108-117
    • /
    • 2021
  • BACKGROUND: Dichlobentiazox is a newly registered pesticide in Korea as a triazole fungicide and requires establishment of an official analysis method for the safety management. Therefore, the aim of this study was to determine the residual analysis method of dichlobentiazox for the five representative agricultural products. METHODS AND RESULTS: Three QuEChERS methods were applied to establish the extraction method, and the EN method was finally selected through the recovery test. In addition, various adsorbent agents were applied to establish the clean-up method. As a result, it was found that the recovery of the tested pesticide was reduced when using the d-SPE method with PSA and GCB, but C18 showed an excellent recovery. Therefore this method was established as the final analysis method. For the analysis, LC-MS/MS was used with consideration of the selectivity and sensitivity of the target pesticide and was operated in MRM mode. The results of the recovery test using the established analysis method and inter laboratory validation showed a valid range of 70-120%, with standard deviation and coefficient of variation of less than 3.0% and 11.6%, respectively. CONCLUSION: Dichlobentiazox could be analyzed with a modified QuEChERS method, and the method determined would be widely available to ensure the safety of residual pesticides in Korea.

Suggestions for More Reliable Measurement of Korean Nuclear Power Industry Safety Culture

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • Objective: The aim of this study is to suggest some improvement ideas based on the validity and the reliability analyses of the current safety culture measurement method applied to the Korean nuclear power industry. Background: Wrong safety culture is known as one of the major causes of the disasters such as the space shuttle Columbia disaster or the Fukushima Nuclear Power Plant accident. Assessment of safety culture of an organization is important to build a safer organizational environment as well as to identify the risks hidden in the organization. Method: A face validity of the current safety culture measurement method was analyzed by comparison of the key factors of safety culture in the Korean nuclear power industry with those factors reviewed in the previous studies. The current interview method was analyzed to identify the problems which degrade the consistency of evaluation. Results: Most safety culture factors reviewed in the literatures are covered in the list of the Korean nuclear power industry safety culture factors. However the unstructured questions used in the interview may result in inconsistency of safety culture evaluation among interviewers. Conclusion: This study suggests some examples which might improve the consistency of interviewers' evaluation on safety culture such as a post interview evaluation form. Application: An extended post interview evaluation form might help to increase the accuracy of the interviewing method for Korean nuclear industry safety culture evaluation.

Establishment of Analytical Method for Residues of Ethychlozate, a Plant Growth Regulator, in Brown Rice, Mandarin, Pepper, Potato, and Soybean Using HPLC/FLD

  • Kim, Jae-Young;Lee, Jin Hwan;Lee, Sang-Mok;Chae, Young-Sik;Rhee, Gyu-Seek;Chang, Moon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.111-119
    • /
    • 2015
  • BACKGROUND: Ethychlozate (ECZ) is a plant growth regulator of synthetic auxin for agricultural commodities (ACs). Accurate and sensitive method to determine ECZ in diverse ACs on global official purpose is required to legal residue regulation. As the current official method is confined to the limited type of crops with poor validation, this study was conducted to improve and extend the ECZ method using high-performance liquid chromatography (HPLC) in all the registered crops with method verification. METHODS AND RESULTS: ECZ and its acidic metabolite (ECZA) were both extracted from acidified samples with acetone and briefly purified by dichloromethane partition. ECZ was hydrolyzed to form ECZA and the combined ECZA was finally purified by ion-associated partition including hexane-washing. The instrumental quantitation was performed using HPLC/ FLD under ion-suppression of ECZA with no interference by sample co-extractives. The average recoveries of intra- and inter-day experiment ranged from 82.0 to 105.2% and 81.7 to 102.8%, respectively. The repeatability and reproducibility for intra- and inter-day measurements expressed as a relative standard deviation was less than 8.7% and 7.4%, respectively. CONCLUSION: Established analytical method for ECZ residue in ACs was applicable to the nation-wide pesticide residues monitoring program with the acceptable level of sensitivity, repeatability and reproducibility.

Development and Application of DNA Analysis Method for Identificaion of Main Ingredients in Starch (전분의 주원료 판별을 위한 유전자 분석법 개발 및 적용)

  • Park, Yong-Chjun;Kim, Mi-Ra;Kim, Yong-Sang;Lee, Ho-Yeon;Kim, Kyu-Heon;Lee, Jae-Hwang;Kim, Jae-I;Lee, Sang-Jae;Lee, Hwa-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.181-187
    • /
    • 2013
  • Identification of main ingredients in starches has been investigated using physicochemical analysis method mainly. However, physicochemical properties such as particle size have limitations in determining the differences among mixed starches. Therefore, we developed a molecular biological method to identify materials used in starch, as a sample, 11 kinds of starches including sweet potato starch, potato starch, corn starch, and tapioca starch. DNeasy plant mini kit, magnetic DNA purification system, and CTAB methods were used to extract DNA from samples. After gene extraction, whole genome amplification (WGA) was performed to amplify the extracted DNA. Species-specific primers were used as followings: ib-286-F/ib-286-R (105 bp), Pss 01n-5'/Pss 01n-3' (216 bp), SS11b 3-5'/SS11b 3-3' (114 bp), and SSRY26-F/SSRY26-R (121 bp) gene for sweet potato, potato, corn, and tapioca, respectively. In this study, we could confirm the main ingredients using WGA and PCR method.

Enhancement of Analytical Method for Thidiazuron Residues and Monitoring of its Residues in Agricultural Commodities (농산물 중 thidiazuron 잔류분석법 개선 및 잔류실태 조사)

  • Do, Jung-Ah;Lee, Mi-Young;Park, Hyejin;Kwon, Ji-Eun;Cho, Yoon-Jae;Chang, Moon-Ik;Oh, Jae-Ho;Hong, Jin-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.207-213
    • /
    • 2013
  • BACKGROUND: This study was conducted to develop analytical method with reproducibility, accuracy and applicability to agricultural products than the existing methods. METHODS AND RESULTS: Mean recoveries of thidiazuron ranged from 89.2 to 91.2 in hulled rices, 87.2 to 92.1 in peppers, from 76.4 to 86.9 in potatoes, from 91.2 to 95.7 in watermelons, from 86.5 to 88.5 in kiwi fruits, and from 89.5 to 94.0 in grapes, with less than 10% of relative standard deviations. In addition, the limit of quantitation was set to be 0.05 mg/kg and there were no interfering peaks in integrating the thidiazuron peak. CONCLUSION(S): These results represent that the enhanced analytical method has reliable accuracy, precision, selectivity, and sensitivity.

Standardization for Analysis Method of Total Polyphenol in Complex of Picao Preto (피카오프레토 등 복합물 중 총 폴리페놀 분석법 표준화)

  • Hu, Soojung;Kim, Ji-An;Moon, Myung-Hee;Lee, Sung-Hye;Yoon, Hae-Seong;Hong, Jin-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • As generic health functional food items have been expanded, this research project has been conducted to prepare a scientific and systematic standardized analytical method of relevant food item and examine the suitability of the method for health/functional foods on sale. Total polyphenol was necessary for development and verification of standardized analytical method. The method exhibited high linearity in the tannic acid calibration curve ($r^2$ > 0.999) over concentrations of $5-50{\mu}g/mL$. The limits of detection and quantitation for tannic acid were $5{\mu}g/mL$ and $15{\mu}g/mL$, respectively, while tannic acid recovery was 102.3-112.4% with standard deviations of 0.8-3.2%. To verify the accuracy of the analytical method, the labeled amounts of purchased health functional foods were monitored. The recovery for tannic acid was 105.6% of the labeled amounts. Thus, the new method was suitable for all cases.

Development and Validation of an Analytical Method for Flutianil Residue Identification Using Gas Chromatography-Electron Capture Detection (GC-ECD를 이용한 flutianil 잔류량 분석법 개발 및 확인)

  • Kwon, Ji-Eun;Do, Jung-Ah;Park, Hyejin;Lee, Ji-Young;Cho, Yoon-Jae;Oh, Jae-Ho;Rhee, Gyu-Seek;Lee, Sang-Jae;Chang, Moon-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • A sensitive and simple analytical method to identify flutianil residues in agricultural commodities was developed and validated using gas chromatography-electron capture detection (GC-ECD) and mass spectrometry (GC-MS). The flutianil residues were extracted with acetonitrile, partitioned with dichloromethane, and then purified using a silica solid-phase extraction (SPE) cartridge. The method was validated using pepper, sweet pepper, mandarin, hulled rice, soybean, and potato spiked with 0.02 or 0.2 mg/kg flutianil. The average recovery of flutianil was 76.5-108.0% with a relative standard deviation of less than 10%. The limit of detection and limit of quantification were 0.004 and 0.02 mg/kg, respectively. The result of recoveries and relative standard deviation were in line with Codex Alimentarius Commission Guidelines (CAC/GL 40). These results show that the method developed in this study is appropriate for flutianil identification and can be used to maintain the safety of agricultural products containing flutianil residues.