• Title/Summary/Keyword: Safe life design

Search Result 203, Processing Time 0.026 seconds

Structural Analysis on Durability of Forklift due to Opening and Closing Between Forks (개폐에 따른 지게차 포크의 내구성에 대한 구조해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2013
  • Stress and deformation on forklift happened at loading, unloading or moving freight are studied by structural and fatigue analysis in this study. As model 1 as closing type between forks has lower stress and stain than model 2 at opening type, model 1 has more durability than model 2. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' with the severest change of load at model 1 and 2, maximum life is shown with Cycle. Minimum damage with 854 at model 2 becomes much higher than model 1. As the gap between forks becomes open, the damage probability becomes higher. The structural result of this study can be effectively utilized with the safe and stable design of forklift by investigating prevention and durability against its damage.

A Study on the Evaluation Method of the Building Safety Performance and the Prediction of Occupants′ Egress Behavior during Building Fires with Computer Simulation (컴퓨터시뮬레이션에 의한 피난행태예측 및 안전성능평가방법에 관한 연구(II))

  • 최원령;이경회
    • Fire Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.11-19
    • /
    • 1989
  • In this study, the independent variables are the floor plan configulation. The dependent variables are the occupant's egress behavior, especially spatial movement pattern, and life - safety performance of building. Fire events were simulated on single story of office building. Simulation run for allowable secaping thime(180 seconds) arbitrarily selected, and involved 48 occupants. The major findings Pre as follows. 1) Computer simulation model suggested in this study can be used as the Preoccupancy evaluation method of the life-safety performance for architectural design based on prediction of occupants' egress behavior in the levels of validity and sensitivity, 2) Sucess or failure in occupants' escape is determined by decreasing walking speed caused by jamming at exits or over crowded corridor, and increasing route length caused by running about in confusion at each subdivision and corridor. 3) In floor plan configuration which safe areas located at the extreme ends of the corridor, cellular floor planning have to be avoided preventing jamming and running about in confusion at overcrowded corridor.

  • PDF

A Study on Elderly Nursing Home Design Direction Based on Yalom's Existential Psychotherapy (얄롬의 실존주의 심리치료에 의거한 노인요양시설 디자인 방향에 대한 연구)

  • Chung, Miryum
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.3
    • /
    • pp.186-196
    • /
    • 2015
  • This research comprehended the fundamental cause of elderly nursing home residents' negative feelings of loneliness, depression, fear, and loss of self-usefulness as existential issue, since they already went through loss, death of loved ones, geriatric disease and disability. The purpose of this research is to explore how existentialism and existential psychotherapy theory of Irvin D. Yalom can be applied to nursing home environment design, and to suggest design directions. Based on his framework of human's ultimate interest, death, freedom followed by responsibility, isolation, and meaninglessness, interior design suggestions and applicable spaces were presented. Four cases from Australia, Denmark, Japan and Korea were analyzed according to design suggestions to grasp the current situation and to draw further proposition. The conclusions are as follows. (1)Environment should support nursing home residents to resolve existential issues. (2)Death is the least supported issue on all of the cases. Environmental elements that can induce residents to think and discuss on death, hospice program and space for memorial service is necessary. (3)Regarding to freedom, the environment should support resident's disability to maintain independence as much as possible and residents autonomy and decision should be respected. Single/double rooms, motorized bed, free and safe usage of kitchen and garden are necessary. (4)For isolation, Space and time for meditation should be provided. (5)To find meaning of life, environment should support residents in both physical and cognitive aspect so that they can contribute to others. Space for hobby is necessary for continued creativity and self-realization.

Apartment Bathroom Design to Prevent Fall for Independence of the Elderly (고령자의 독립성을 고려한 낙상예방 공용욕실 계획)

  • Cho, Heayon;Lee, Hyunsoo
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2017
  • It is very important for the elderly to maintain their independence and to live safe and comfortable daily lives in order to lead an independent life. The bathroom in the house has the greatest number of fall accidents and has a great influence on the independence of the elderly. Therefore, the purpose of this study is to develop a bathroom design method that improves the independence of the elderly whose physical function is deteriorated through preventing falls. In this study, first of all, we investigated the causes of falling in bathrooms based on the previous studies, and identified the intelligent services that can prevent falls and selected them according to individual needs. Secondly, we investigated the bathroom size of the apartment among the various housing type, analyzed the type of the bathroom, and developed a standard type of the bathroom. Thirdly, we analyzed the design guidelines for the elderly residents in Korea and proposed improvement directions. We also divided the intelligent sanitary appliances and fall-prevention products and proposed the installation method and directions. Therefore, the comprehensive bathroom design standards and proposals proposed in this study will be the basis of bathroom design to prevent falls and improve independence of the elderly, and it will be easy to understand and help the designer in designing. Finally, this study is meaningful in that it provides independence of the elderly through fall prevention and increases the easiness of hygiene action and suggests direction to maintain self-sustaining life of the elderly.

A Study of Dynamis Force Estimation and Strength Design of KALES (포장가속시험시설의 동역학 힘 예측 및 강도설계에 관한 연구)

  • Kim, Nak-In;Yang, Sung-Chul;Park, Yong-Geol
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.211-221
    • /
    • 2001
  • The dynamic force estimation and strength design of KALES(Korea Accelerated Loading and Environmental Simulator) are studied. The KALES is continuously rotating the test track and subjected to the dynamic or impact forces during operation since the track is composed of straight and curved line. To estimate the dynamic equation for the model car which was already made is derived with analytical and experimental techniques. Using similarity relationships between the model car and KALES, the dynamic force and stability properties for KALES can be predicted. The stress analysis and fatigue life estimation of KALES is also estimated with the calculated dynamic load. From the stress analysis and fatigue life estimation results, it was found that the design of KALES is safe.

  • PDF

High Cycle Fatigue Life Evaluation of Damaged Composite Rotor Blades (손상된 복합재 로터 블레이드의 고주기 피로수명 평가)

  • Kee, Young-Jung;Kim, Seung-Ho;Han, Jeong-Ho;Jung, Jae-Kwon;Heo, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1275-1282
    • /
    • 2012
  • Helicopter rotor systems are dynamically loaded structures with many composite components such as the main and the tail rotor blades. The fatigue properties of composite materials are extremely important to design durable and reliable helicopter rotor blades. The safe-life methodology has generally been used in the helicopter industry to substantiate dynamically loaded composite components. However, it cannot be used to evaluate the strength reducing effects of flaws and defects that may occur during manufacturing and operational usage. The damage tolerance methodology provides a proper means to overcome this shortcoming; however, it is difficult to economically apply it to every composite component. The flaw tolerant methodology is an equivalent option to the damage tolerance methodology for civil and military rotorcraft. In this study, the flaw tolerant safe-life evaluation is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

Convergent Study on Fatigue Life Analysis of Driving Shaft in Jet Engine (제트엔진에서의 추진축의 피로 수명해석에 관한 융합연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.279-284
    • /
    • 2015
  • The vibration happened at the revolution movement of driving shaft driven with the thrust of airplane affects the great influence on the life of the shaft. And a great loss of life is caused when the fatigue damage is occurred at the driving shaft during revolution. The chattering is occurred at the driving shaft placed at the various revolution due to the aviation environment. Therefore, the part of the driving shaft concerned about the fatigue damage is grasped through the analysis study in this paper. So, the durability to prevent damage can be improved and it is possible to be grafted onto the convergence technique on the basis of a recent safe design and show the esthetic sense.

Thermo-mechanical Reliability Analysis of Copper TSV (구리 TSV의 열기계적 신뢰성해석)

  • Choa, Sung-Hoon;Song, Cha-Gyu
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • TSV technology raises several reliability concerns particularly caused by thermally induced stress. In traditional package, the thermo-mechanical failure mostly occurs as a result of the damage in the solder joint. In TSV technology, however, the driving failure may be TSV interconnects. In this study, the thermomechanical reliability of TSV technology is investigated using finite element method. Thermal stress and thermal fatigue phenomenon caused by repetitive temperature cycling are analyzed, and possible failure locations are discussed. In particular, the effects of via size, via pitch and bonding pad on thermo-mechanical reliability are investigated. The plastic strain generally increases with via size increases. Therefore, expected thermal fatigue life also increase as the via size decreases. However, the small via shows the higher von Mises stress. This means that smaller vias are not always safe despite their longer life expectancy. Therefore careful design consideration of via size and pitch is required for reliability improvement. Also the bonding pad design is important for enhancing the reliability of TSV structure.

Reliability-based Approach to Optimal Economic Estimation of Concrete Cover Thickness under Carbonation Environment

  • Do, Jeong-Yun;Kim, Doo-Kie;Song, Hun;Jo, Young-Kug
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • Concrete carbonation is a cause of problems in concrete structures, so it needs to be estimated. And concrete cover is designed to protect structures from this damaging. Usually the cover thickness is considered based on the limit states design codes in which the important target is the reliability safety index. However, it is not clear that whether the safety index determined is optimal or not with respect to the cost. The codes are mainly proceeded quantitatively (i.e. making a safe structure) while the economic aspects are only considered qualitatively. So the reliability-based design considering life cycle cost (LCC) is called for, and here the focus is on the advanced analysis solution to optimize the reliability safety regarding LCC.

Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade (소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구)

  • Kong, Changduk;Choi, Suhyun;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF