• Title/Summary/Keyword: Safe design

Search Result 2,030, Processing Time 0.028 seconds

Design and Implementation of ASTERIX Parsing Module Based on Pattern Matching for Air Traffic Control Display System (항공관제용 현시시스템을 위한 패턴매칭 기반의 ASTERIX 파싱 모듈 설계 및 구현)

  • Kim, Kanghee;Kim, Hojoong;Yin, Run Dong;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.89-101
    • /
    • 2014
  • Recently, as domestic air traffic dramatically increases, the need of ATC(air traffic control) systems has grown for safe and efficient ATM(air traffic management). Especially, for smooth ATC, it is far more important that performance of display system which should show all air traffic situation in FIR(Flight Information Region) without additional latency is guaranteed. In this paper, we design a ASTERIX(All purpose STructured Eurocontrol suRveillance Information eXchange) parsing module to promote stable ATC by minimizing system loads, which is connected with reducing overheads arisen when we parse ASTERIX message. Our ASTERIX parsing module based on pattern matching creates patterns by analyzing received ASTERIX data, and handles following received ASTERIX data using pre-defined procedure through patterns. This module minimizes display errors by rapidly extracting only necessary information for display different from existing parsing module containing unnecessary parsing procedure. Therefore, this designed module is to enable controllers to operate stable ATC. The comparison with existing general bit level ASTERIX parsing module shows that ASTERIX parsing module based on pattern matching has shorter processing delay, higher throughput, and lower CPU usage.

PASEM을 이용한 KSR-III Nose Fairing 분리운동 예측

  • Ok, Ho-Nam;Kim, In-Sun;Ra, Sung-Ho;Kim, Seong-Lyong;Oh, Beom-Suk
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.171-181
    • /
    • 2003
  • The nose fairings of KSR-III are designed to be separated from the rocket by explosive force at the mission altitude to expose the payload. Adequate amount of separation force should be imposed to allow safe separation without collision between the fairings and the rocket, and the separation device was designed for the separation at very high altitude where almost no air load was expected. As the development of KSR-III goes on, several design changes have made and lower separation altitude of 45km is expected as a result. Under these circumstances, it is required to determine if the nose fairings can be separated without collision with much severer air load than for the design condition. In this study, the 6-DOF motion analysis program, PASEM, which was developed to predict the strap-on booster separation, is modified to simulate the pivotal motion of the fairings at early stages of separation. The accuracy of pivot motion simulation is validated by comparison with the results of ground test and the accurate separation conditions are deduced from it. Trajectory simulations are performed to see if separation without collision is possible with varying angle of attack, direction of gravity, and the effect of gust. It is also found that reducing the separation angle of the clamshell hinge from 60 degrees to 40 degrees can enhance separation safety and separation at lower altitude of 40km can be done without collision.

  • PDF

Amber Information Design for Supporting Safe-Driving Under Local Road in Small-scale Area (국지지역에서의 안전운전 지원을 위한 경보정보 설계)

  • Moon, Hak-Yong;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.38-48
    • /
    • 2010
  • Adverse weather (e.g. strong winds, snow and ice) will probably appear as a more serious and frequent threat to road traffic than in clear climate. Another consequence of climate change with a natural disastrous on road traffic is respond to traffic accident more the large and high-rise bridge zone, tunnel zone, inclined plane zone and de-icing zone than any other zone, which in turn calls for continuous adaption of monitoring procedures. Accident mitigating measures against this accident category may consist of intense winter maintenance, the use of road weather information systems for data collection and early warnings, road surveillance and traffic control. While hazard from reduced road friction due to snow and ice may be eliminated by snow removal and de-icing measures, the effect of strong winds on road traffic are not easily avoided. The purpose of the study described here, was to design of amber information the relationship between traffic safety, weather, user information on road weather and driving conditions in local-scale Geographic. The most applications are the optimization of the amber information definition, improvements to road surveillance, road weather monitoring and improved accuracy of user information delivery. Also, statistics on wind gust, surface condition, vehicle category and other relevant parameters for wind induced accidents provide basis for traffic control, early warning policies and driver education for improved road safety at bad weather-exposed locations.

Development of Simulation Method to Design Rover's Camera System for Extreme Region Exploration (극한지 탐사 로버의 카메라 시스템 설계를 위한 시뮬레이션 기법 개발)

  • Kim, Changjae;Park, Jaemin;Choi, Kanghyuk;Shin, Hyu-Soung;Hong, Sungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.271-279
    • /
    • 2019
  • In extreme environment regions, unmanned rovers equipped with various sensors and devices are being developed for long-term exploration on behalf of humans. On the other hand, due to the harsh weather conditions and rough terrain, the rover camera has limited visible distance and field of view. Therefore, the rover cameras should be located for safe navigation and efficient terrain mapping. In this regard, to minimize the cost and time to manufacture the camera system on a rover, the simulation method using the rover design is presented to optimize the camera locations on the rover efficiently. In the simulation, a simulated terrain was taken from cameras with different locations and angles. The visible distance and overlapped extent of camera images, and terrain data accuracy calculated from the simulation were compared to determine the optimal locations of the rover's cameras. The simulated results will be used to manufacture a rover and camera system. In addition, self and system calibrations will be conducted to calculate the accurate position of the camera system on the rover.

Analytical study of circle tunnel Load considering Dilatancy Effect (Dilatancy 효과를 고려한 원형 터널 이완하중에 대한 해석적 연구)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.626-633
    • /
    • 2020
  • This study examined the behavior of the ground by comparing the methods using the results of the Terzaghi formula and the ground investigation data and method considering the dilatancy effect for a circular tunnel using the finite element method. In the case of the Terzaghi formula, the tunnel load can be overestimated and cause overdesign. The method using the results of the ground investigation data cannot be applied when a reasonable coefficient of earth pressure is not determined. This is because it behaves completely differently from the actual behavior, and unexpected problems can occur. In the case of the method considering the dilatancy effect, however, both the strength enhancement effect can be considered through the dilatancy angle and relative density. Therefore, the tunnel load was calculated most reasonably using the method considering dilatancy. Finite element analysis using the geotechnical survey results showed that the tensile stress acts at the top of the tunnel when the upper soil of the tunnel is shallow. On the other hand, additional verification is necessary, such as a comparison with the field measurement results. Through additional research, if normalized, the tunnel load can be calculated reasonably at the time of tunnel design, and safe and economical design is possible.

Technique to Evaluate Safety and Loaded Heavy Equipment Grade in RC Building during Demolition Work (RC건축물 해체공사의 안전성 평가기법 및 탑재장비 등급 제안)

  • Park, Seong-Sik;Lee, Bum-Sik;Kim, Hyo-Jin;Sohn, Chang-Hak
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.195-204
    • /
    • 2011
  • During mechanical demolition of RC structures, weights of dismantling equipment and demolition waste of building are applied to unexpected load which did not be considered during the design of structural member. Nevertheless, the loading of dismantling equipment and dismantling process are mainly dependent on field managers' field workers' or experiences without considering safety of structural member by a structural engineer. It is urgently required that reflecting actual circumstance of mechanical demolition, safety evaluation method to evaluate the safety and the guideline for appropriate capacity of structural member to support dismantling equipment weight, be provided. Through site investigation and questionnaire on field workers, this paper proposed demolition waste load, load factor, strength reduction factor, and so on. These are essential to safe evaluation of a building, ready to demolition. Considering actual circumstance of mechanical demolition, safety evaluation method of building and design method of slab and beam was suggested to a dilapidated building. An capability to loading of dismantling equipment was proposed, applied to RC slab and RC beam. Therefore, the suggested safety evaluation method and the guideline for an capability to loading of dismantling equipment weight can reasonably evaluate the capacity of structural member in demolition and use effectively as increasing efficiency and improving safety of demolition through proper management of dismantling equipments.

Development of a Crash Cushion Using the Frictional and Inertial Energy by Computer Simulation (컴퓨터 시뮬레이션에 의한 관성과 마찰 에너지를 이용하는 충격흡수시설의 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • Crash cushions are protective devices that prevent errant vehicles from impacting on fixed objects. This function is accomplished by gradually decelerating a vehicle to a safe stop in a relatively short distance. Commonly used crash cushions generally employ one of two concepts to accomplish this function. The first concept involves the absorption of the kinetic energy of a moving vehicle by crushable or plastically deformable materials and the other one involves the transfer of the momentum of a moving vehicle to an expendable mass of material located in the vehicle's path. Crash cushions using the first concept are generally referred to as compression crash cushions and crash cushions using the other concept are generally referred to as inertial crash cushion. The objective of this research is the development of a compression-type crash cushion by employing the two concepts simultaneously. To minimize the number of full-scale crash tests for the development of the crash cushion, preliminary design guide considering inertial and frictional energy absorption was constructed and computer simulation was performed. LS-DYNA program, which is most widely used to analyze roadside safety features, was used for the computer simulation. The developed crash cushion satisfied the safety evaluation criteria for various impact conditions of CC2 performance level in the Korean design guide.

An Experimental Study on Blasting Collapse Behavior of Asymmetry Structure with High Aspect Ratio (고종횡비 비대칭 구조물의 발파붕괴 거동에 관한 연구)

  • Song, Young-Suk;Jung, Min-Su;Jung, Dong-Wol;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In blasting demolition, a method would be chosen among many depends on shape and system of a structure and its surround. To demolish using explosives a structure, which is asymmetric and with high aspect ratio, pre-weakening, explosive locations, detonating delay, and surround conditions are needed to be considered in front to design blasting demolition plan. In this study, to over turn asymmetric and high aspect ratio structure in safe, a simulation using a software named Extreme Loadings for Structures, ELS, had performed. In results, it is achieved optimized pre-weakening shapes and locations, which prevent kick back motion of the structure when it collapse, by analyzing moment distribution caused by pre-weakening. And of structural collapse and by minimizing asymmetric structure's torsional moment. Also, after the demolition, simulation results are also compared with actual collapse behavior. In results, it is confirmed the accuracy of collapse behaviour simulation results, and in blasting demolition, kick back motion can be controled by adjusting pre-weakening shape and location, and the torsional moment of an asymmetric structure also can be solved by optimizing detonation locations and its time intervals.

Safety Evaluation of Concert Hall Floor Vibration Using Numerical Analysis Model (수치해석모델을 이용한 콘서트 홀 바닥진동 안전성 평가)

  • Roh, Ji-Eun;Heo, Seok-Jae;Moon, Dae-Ho;Lee, Sang-Hyun;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.469-477
    • /
    • 2017
  • In this paper, the floor vibration of an example concert hall building was measured and floor safety criteria were analytically checked through comparison between experimental and analytical results. The floor bottom plate model was constructed considering the composite effect and the analytical model was modified to have the natural frequency identical to the measured one. Also, time history analysis was conducted using the dynamic loads induced by human rhythmic movement during a musical performance, and the analytically calculated floor accelerations were similar to the measured one. Based on this model, the floor vibration level due to the group activities of about 400 persons, maximum available persons for the concert hall, was estimated. It was confirmed that the human induced dynamic loads applied to the column and beam would be much lower than the design strength. In addition, the horizontal acceleration level is just 2% of the design seismic load, so the concert hall is safe in both vertical and horizontal excitations by human rhythmic movements.

Verifying a Safe P2P Security Protocol in M2M Communication Environment (M2M 통신환경에서 안전한 P2P 보안 프로토콜 검증)

  • Han, Kun-Hee;Bae, Woo-Sik
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.213-218
    • /
    • 2015
  • In parallel with evolving information communication technology, M2M(Machine-to-Machine) industry has implemented multi-functional and high-performance systems, and made great strides with IoT(Internet of Things) and IoE(Internet of Everything). Authentication, confidentiality, anonymity, non-repudiation, data reliability, connectionless and traceability are prerequisites for communication security. Yet, the wireless transmission section in M2M communication is exposed to intruders' attacks. Any security issues attributable to M2M wireless communication protocols may lead to serious concerns including system faults, information leakage and privacy challenges. Therefore, mutual authentication and security are key components of protocol design. Recently, secure communication protocols have been regarded as highly important and explored as such. The present paper draws on hash function, random numbers, secret keys and session keys to design a secure communication protocol. Also, this paper tests the proposed protocol with a formal verification tool, Casper/FDR, to demonstrate its security against a range of intruders' attacks. In brief, the proposed protocol meets the security requirements, addressing the challenges without any problems.