• Title/Summary/Keyword: Saemangeum sluice-gate

Search Result 9, Processing Time 0.027 seconds

Discharge Coeficient Analysis according to Flow Condition for Radial Gate Type (Radial Gate 형식의 배수갑문 흐름조건별 유량계수 검토)

  • Park, Yeong-Wook;Hwang, Bo-Yeon;Song, Hyun-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.306-312
    • /
    • 2005
  • Gates for the purpose of drainage are classified following the types of structure as: Radial Gate, Sluice Gate, Rolling Gate, Drum Gate. In many cases of the reclamation project the sluice type of gates are applied. Different from this general trend, however the radial type of gate was adopted in the Saemangeum project. In this case the discharge coefficients which are used for the sluice type of gate was applied. To estimate the correct amount of discharge which will be evacuated through the gates, therefore the proper discharge coefficients should be estimated before the operation of the gates. The discharge coefficients were estimated through the physical hydraulic modeling, and we got the results as: $0.72{\sim}0.84$ for the submerged condition on the both sides of upstream and downstream, $0.62{\sim}0.83$ for the free surface condition on the downtream side only, and $1.04{\sim}1.12$ for the free surface condition on the both sides of upstream and downstream. The discharge coefficients obtained from the experiments are greater than those of the sluice gates in the design criteria. From the results of the study we may expect that in the Saemangeum project the radial gates could evacuate larger amount of discharge than the originally designed discharge, so that we may sure that the Saemangeum gates have enough capability to control the evacuation of water not only in the usual period but also in the flooding season.

  • PDF

Development of Camera Monitoring System for Detecting the Opening Status of Saemangeum Sluice Gate (새만금 갑문 개폐 자동 영상 관측 시스템 개발)

  • Kim, Tae-Rim;Park, Jong-Jib;Jang, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.73-83
    • /
    • 2011
  • The opening status of Saemangeum sluice gate is an important factor to the coastal water qualities near Saemangeum dikes. The sluice gate opening information is important in analysing current velocity and water quality data measured at the Saemanguem observation tower as well as in determining boundary conditions of numerical simulation for coastal environment outside Saemangeum dikes. This study establishes unmanned camera monitoring system on Saemangeum observation tower using mini notebook and digital camera, and extracts information on the opening status from images automatically. Images are analysed using variance difference of images together with edge detection techniques in order to get correct information.

A Study on the Influence of the Saemangeum Sluice-Gates Effluent Discharge using the Particle Tracking Model (입자추적 실험을 이용한 새만금 배수갑문 유출수의 영향 범위 연구)

  • Cho, Chang Woo;Song, Yong Sik;Bang, Ki Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.211-222
    • /
    • 2020
  • This study suggested a method calculating the influence of effluent discharge from Saemangeum sluice-gates using the particle tracking model. For 2017, we presented the seasonal effects of effluent discharge as probability spatial distributions and compared with the results of the water age, one of the indicators of transport time scale. The influence of sluice-gates effluent discharge increases radially around Sinshi or Gaseok gates, which are expected to be biased toward the south in winter and north in summer due to the effect of seasonal winds. Although the results of the prediction are limited to the 2017 situation, the method of calculating the influence of sluice-gates effluent discharge using the Lagrangian particle tracking model can be used to predict the future of the around Saemangeum.

Salinity Changes and Bottom Water Particle Exchange Simulations in Response to Sluice Gate Operations at Saemangeum Lake (새만금 배수갑문 운영에 따른 염분 변화와 저층수의 입자교환 모의)

  • Seonghwa Park;Jonggu Kim;Minsun Kwon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.562-575
    • /
    • 2023
  • In an effort to improve water quality, the South Korean government has implemented measures to increase seawater circulation in Saemangeum Lake. We analyzed the effect of increasing the frequency of seawater circulation based on salinity levels and bottom water exchange in the lake, using an environmental fluid dynamics code model. When the sluice gate opening and shutting frequency increased from once to twice per day, the internal water level of Saemangeum Lake increased by up to ~0.7 m. The salinity increased by 2.12 psu near the western breakwater and decreased by 1.18 psu near the freshwater inlet. We analyzed the extent of bottom water exchange using a particle tracing method and observed that the residual rate of particles shallower than 5 m in water depth decreased by 2.52% in Case 2 (opening and shutting twice per day) compared to Case 1 (opening and shutting once per day). This indicates that increasing the frequency of sluice gate opening and shutting would promote enhanced bottom water exchange. Consequently, the increased salinity and bottom water exchange associated with increased seawater circulation are expected to improve water quality in Saemangeum Lake.

Fatigue Analysis of Sluice Gate Trunnion (배수갑문 트러니언의 피로해석)

  • Cho, Jae-Yong;Kim, Kwan-Ho;Cho, Young-Kweon;Lee, Joon-Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.557-558
    • /
    • 2009
  • Fatigue analysis of trunnion on Saemangeum bridge was performed. Trunnion is the some kind of bracket structure between the gate and the bridge peer with varying load by sea water level variation. The result shows some difference with ordinary structures.

  • PDF

Traits of Water Level Control by Sluice Gates and Halophyte Community Formation in Saemangeum (새만금 배수갑문 수위조절 특성과 염생식물 군락지 형성에 관한 연구)

  • Sin, Myoung-Ho;Kim, Chang-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.2
    • /
    • pp.186-193
    • /
    • 2010
  • In order to examine the traits of sluice gate water control, halophyte community formation and their inter-relations in Saemangeum, both water level condition and halophyte community formation were analyzed periodically and spatially on the topographic map with Surfer, Saemageum Spatial Analysis System, and related field reports. The traits of water level condition are that average water level in the growing period of halophytes was similar to annual average water level, annual low level and high level appeared in the growing period, and water level was usually maintained within a range of -1.0m~0.5m above mean sea level, but it has changed more frequently year by year. Routine water level control, natural disaster prevention, construction, and civil appeal took major percentages of the reasons for sluice gate's opening and shutting. Since 2007, not only the overall control frequency of sluice gate but also its control frequency for construction and natural disaster prevention have increased outstandingly. Halophyte community had formed at a rate of 1,209ha/year in the 4,315 ha land in 2008, 6.3 times larger than in 2005, and 2,382 ha above around 1.0m was estimated to be artificially vegetated, 89.1 % of the 2,673ha-size sown area. High water level was found to be a more possible determinant than average water level or low water level in halophyte community formation and it was thought to be secondary factors whether tillage was conducted or/and whether surface sealing formed.

Hydrodynamic Modeling of Saemangeum Reservoir and Watershed using HSPF and EFDC (HSPF-EFDC를 이용한 새만금호와 유역의 수리 변화 모의)

  • Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Jung-Hoon;Jung, Kwang Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.384-393
    • /
    • 2012
  • Saemangeum lake is an artificial lake created by reclamation works and an estuary embankment since 2006. The sea water flows into the lake by the operation of two sluice gates, and the freshwater enters into the lake by the upper streams. For the reflection of hydrology and hydrodynamics effects in Saemangeum area, a hydrodynamics model was developed by connecting Hydrological Simulation Program with Fortran (HSPF) and Environmental Fluid Dynamic Code (EFDC). The HSPF was applied to simulate the freshwater discharge from the upper steam watershed, and the EFDC was performed to compute water flow, water temperature, and salinity based on time series from 2008 to 2009. The calibration and validation are performed to analyze horizontal and vertical gradients. The horizontal trend of model simulation results is reflected in the trend of observed data tolerably. The vertical trend is conducted an analysis of seasonal comparisons because of the limitation of vertically observed data. Water temperature reflects on the seasonal changes. Salinity has an effect on the near river input spots. The impact area of salinity is depending on the sea water distribution by gate operation, mainly.

Simulations of Pollutant Mixing Regimes in Seamangeum Lake According to Seawater Exchange Rates Using the EFDC Model (EFDC모형을 이용한 새만금호 내 해수유통량에 따른 오염물질 혼합 변화 모의)

  • Jeong, Hee-Young;Ryu, In-Gu;Chung, Se-Woong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.53-62
    • /
    • 2009
  • The EFDC (Environmental Fluid Dynamics Code), a numerical model for simulating three-dimensional (3D) flow, transport, and biogeochemical processes in surface water systems including rivers, reservoirs, and estuaries, was applied to assess the effect of sea water and fresh water exchange rates ($Q_e$) on the mixing characteristics of a conservative pollutant (tracer) induced from upstreams and salinity in Saemangeum Lake, Korea. The lake has been closed by a 33 km estuary embankment since last April of 2006, and now seawater enters the lake partially through two sluice gates (Sinsi and Garyuk), which is driving the changes of hydrodynamic and water quality properties of the lake. The EFDC was constructed and calibrated with surveyed bathymetry data and field data including water level, temperature, and salinity in 2008. The model showed good agreement with the field data and adequately replicated the spatial and temporal variations of the variables. The validated model was applied to simulated the tracer and salinity with two different gate operation scenarios: RUN-1 and RUN-2. RUN-1 is the case of real operation condition ($Q_e=25,000,000\;m^3$) of 2008, while RUN-2 assumed full open of Sinsi gate to increase $Q_e$ by $120,000,000\;m^3$. Statistical analysis of the simulation results indicate that mixing characteristics of pollutants from upstream can be significantly affected by the amount of $Q_e$.

Effect of Artificial Structures on the Long-Term Topographic Changes at Daehang-ri Intertidal Flat, the West Coast of Korea (인공구조물에 의한 대항리 갯벌의 장기 지형변화)

  • Choi, Tae-Jin;Jeong, Eui-Young;Yang, Young Jin;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.75-82
    • /
    • 2020
  • The Daehang-ri intertidal flat located the just outside of the Saemangeum dike has been reported to show new-developing flats. Based on the topographic surveys of 21 times from 2000 to 2016 by a leveling method every year, this site clearly shows variation of deposition/erosion in time and space. Deposition has consistently occurred at the rate of +3.75 cm per year at the area along the dike (Zone 1), and this tidal flat is expanding and prograding seaward. In the area of far from the dike (Zone 2), on the other hand, erosion prevails at the rate of -2.38 cm per year, and this zone tends to retreat landward. However, the erosional trend of Zone 2 has slightly slowed down since 2014. As a whole from 2000 to 2016, net deposition is recorded over 3.0 m at the upper beach and the area adjacent to the dike (Zone 1), while erosion up to 1.0 m in Zone 2. In conclusion, the results at the Daehang-ri intertidal flat clearly revealed that its topographic changes were induced by the artificial structures and water masses through its sluice gate. Counter-clockwise gyre newly created after the sea dikes construction probably results in relocating of sediment outside the dike 1 by transportation of materials eroded from the south to the north along the coast.