DOI QR코드

DOI QR Code

A Study on the Influence of the Saemangeum Sluice-Gates Effluent Discharge using the Particle Tracking Model

입자추적 실험을 이용한 새만금 배수갑문 유출수의 영향 범위 연구

  • Cho, Chang Woo (Research and Development Institute, GeoSystem Research Corporation) ;
  • Song, Yong Sik (Research and Development Institute, GeoSystem Research Corporation) ;
  • Bang, Ki Young (Research and Development Institute, GeoSystem Research Corporation)
  • 조창우 ((주)지오시스템리서치 부설연구소) ;
  • 송용식 ((주)지오시스템리서치 부설연구소) ;
  • 방기영 ((주)지오시스템리서치 부설연구소)
  • Received : 2020.07.15
  • Accepted : 2020.08.14
  • Published : 2020.08.31

Abstract

This study suggested a method calculating the influence of effluent discharge from Saemangeum sluice-gates using the particle tracking model. For 2017, we presented the seasonal effects of effluent discharge as probability spatial distributions and compared with the results of the water age, one of the indicators of transport time scale. The influence of sluice-gates effluent discharge increases radially around Sinshi or Gaseok gates, which are expected to be biased toward the south in winter and north in summer due to the effect of seasonal winds. Although the results of the prediction are limited to the 2017 situation, the method of calculating the influence of sluice-gates effluent discharge using the Lagrangian particle tracking model can be used to predict the future of the around Saemangeum.

입자추적 실험 결과를 이용하여 새만금 배수갑문 유출수의 영향 범위 파악을 위한 방법론을 수립하고, 2017년을 대상으로 새만금 배수갑문 유출수의 영향 범위를 계절별 확률 분포로 제시하였다. 물질 수송 시간의 지표 중 하나인 water age를 계산하고 입자추적 실험 결과와 비교하여 계산 결과의 타당성을 입증하였다. 배수갑문 유출수는 신시 또는 가력 배수갑문을 중심으로 그 영향 범위가 방사형으로 증가하는데 계절풍의 영향으로 동계에는 남측으로, 하계에는 북측으로 영향 범위가 치우치는 것으로 예측되었다. 예측 결과는 2017년 상황에 한정되지만, 본 연구에서 수립한 입자추적 실험을 이용한 배수갑문 유출수 영향 범위 산정 기법은 현재 변화하고 있는 새만금 해역의 장래 배수갑문 유출수의 영향 범위 산정 연구에 활용이 가능하다.

Keywords

References

  1. Bang, K.Y., Park, S.J., Kim, S.O., Cho, C.W., Kim, T.I., Song, Y.S. and Woo, S.B. (2013). Numerical hydrodynamic modeling incorporating the flow through permeable sea-wall. J. Korean Soc. Coast. Ocean Eng., 25(2), 63-75. https://doi.org/10.9765/KSCOE.2013.25.2.63
  2. Bolin, B. and Rodhe, H. (1973). A note on the concepts of age distribution and transit time in natural reseroirs. Tellus, 25(1), 58-62. https://doi.org/10.1111/j.2153-3490.1973.tb01594.x
  3. Delhez, E.J.M., Campin, J.M., Hirst, A.C. and Deleersnijder E. (1999). Toward a general thoery of the age in ocean modelling. Ocean Modell., 1(1), 17-27. https://doi.org/10.1016/S1463-5003(99)00003-7
  4. Deltares, (2013). Delft3D-FLOW Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments User Manual Hydro-Morphodynamics. Version: 3.15.30808, The Netherlands.
  5. Jung, K.Y., Ro, Y.J. and Kim, B.J. (2013). Characteristics of tidal current and tidal residual current in the Chunsu Bay, Yellow sea, Korea based on numerical modeling experiments. J. Korean Soc. Coast. Ocean Eng., 25(4), 207-218. https://doi.org/10.9765/KSCOE.2013.25.4.207
  6. Kim, J.H., Park, S.E., Kim, H.C., Hong, S. and Lee, W.C. (2020). Spatiotemporal characteristics of anthropogenic pollutant dispersion near shellfish growing area in Jaran Bay: A tracer-based water age approach. J. Korean Soc. Mar. Environ. Energy, 23(1), 29-36. https://doi.org/10.7846/JKOSMEE.2020.23.1.29
  7. Liu, S. (2013). Numerical modeling of hydrodynamic circulation in Lake Taihu. Master's Thesis, Delft University of Technology.
  8. Perianez, R. and Elliott, A.J. (2002). A particle-tracking method for simulating the dispersion of non-conservative radionuclides in coastal waters. J. Environ. Radioact., 58(1), 13-33. https://doi.org/10.1016/S0265-931X(01)00028-5
  9. Salama, N.K.G. and Rabe, B. (2013). Developing models for investigating the environmental transmission of disease-causing agent within open-cage salmon aquaculture. Aquacult. Env. Interac., 4, 91-115. https://doi.org/10.3354/aei00077
  10. Smyth, D., Kregting, L., Elsaber, B., Kennedy, R. and Roberts, D. (2016). Using particle dispersal models to assist in the conservation and recovery of the overexploited native oyster (Ostrea edulis) in an enclosed sea lough. J. Sea Res., 108, 50-59. https://doi.org/10.1016/j.seares.2015.12.009
  11. Suh, S.W. (2006). A hybrid approach to particle tracking and Eulerian-Lagrangian models in the simulation of coastal dispersion. Environ. Modell. Software, 21(2), 234-242. https://doi.org/10.1016/j.envsoft.2004.04.015
  12. Suh, S.W. and Lee, H.Y. (2011). Analysis of hydrodynamic change around the Saemangeum area using a particle tracking method. J. Korean Soc. Coast. Ocean Eng., 23(6), 442-450. https://doi.org/10.9765/KSCOE.2011.23.6.442