DOI QR코드

DOI QR Code

Salinity Changes and Bottom Water Particle Exchange Simulations in Response to Sluice Gate Operations at Saemangeum Lake

새만금 배수갑문 운영에 따른 염분 변화와 저층수의 입자교환 모의

  • Seonghwa Park (Dept. of Civil & Environmental Engineering, Kunsan National University) ;
  • Jonggu Kim (Dept. of Environmental Engineering, Kunsan National University) ;
  • Minsun Kwon (Ocean Physics Dept., Land & Ocean Environmental Eng.)
  • 박성화 (군산대학교 토목환경공학부) ;
  • 김종구 (군산대학교 환경공학과) ;
  • 권민선 (국토해양환경기술단)
  • Received : 2023.07.25
  • Accepted : 2023.10.27
  • Published : 2023.10.31

Abstract

In an effort to improve water quality, the South Korean government has implemented measures to increase seawater circulation in Saemangeum Lake. We analyzed the effect of increasing the frequency of seawater circulation based on salinity levels and bottom water exchange in the lake, using an environmental fluid dynamics code model. When the sluice gate opening and shutting frequency increased from once to twice per day, the internal water level of Saemangeum Lake increased by up to ~0.7 m. The salinity increased by 2.12 psu near the western breakwater and decreased by 1.18 psu near the freshwater inlet. We analyzed the extent of bottom water exchange using a particle tracing method and observed that the residual rate of particles shallower than 5 m in water depth decreased by 2.52% in Case 2 (opening and shutting twice per day) compared to Case 1 (opening and shutting once per day). This indicates that increasing the frequency of sluice gate opening and shutting would promote enhanced bottom water exchange. Consequently, the increased salinity and bottom water exchange associated with increased seawater circulation are expected to improve water quality in Saemangeum Lake.

새만금 호의 수질 개선을 위하여 국가에서 해수 유통을 증가시킴에 따라 해수 유통 빈도 증가로 인한 새만금 호 내 염분과 저층수 교환 변화를 알아보기 위하여, EFDC(Environmental Fluid Dynamics Code) 모델을 이용하였다. 갑문 개폐 횟수를 하루 1회에서 2회로 증가했을 때, 새만금 호 내부 수위는 최대 약 0.7 m 상승하였다. 염분은 서측 방조제 근방에서 2.12 psu 증가하였으며, 담수 유입 부근에서는 1.18 psu 감소하였다. 입자추적을 이용하여 저층수 교환 정도 분석한 결과, 수심 5m 이하 입자 잔류율은 Case 2(1일 2회 개방)에서 Case 1(1일 1회 개방)에 비해 2.52% 감소한 것으로 나타났다. 이는 수문 개폐 횟수를 증가시켰을 때, 저층수 교환이 더 활발해 질 수 있다는 것을 알 수 있다. 따라서 해수 유통 증가에 따른 염분 및 저층수 교환 증가로 새만금 호의 수질 개선이 될 수 있다고 판단된다.

Keywords

References

  1. DSI LLC(2023), EFDC+ Theory, Version 11. Published by DSI LLC, Edmonds WA. Available at https://www.eemodelingsystem.com/wp-content/Download/Documentation/EFDC Theory Document Ver 11.pdf
  2. Dunsbergen, D. W. and G. Stelling(1993), A 3d particle model for transport problems in transformed coordinates. Communications on hydraulic and geotechnical engineering, No. 1993-07
  3. Hamrick, J. M.(1992), A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects. Technical report, Virginia Institute of Marine Science, College of William and Mary.
  4. Jeong, S. K., K. H. Ryu, Y. H. Jung, and S. G. Lee(2018), Optimal management of water level for water quality security in Saemangeum Basin, Journal of the Korean Society of Hazard Mitigation, Vol. 18, Issue 5, pp. 301-309. https://doi.org/10.9798/KOSHAM.2018.18.5.301
  5. Ji, H., C. J. Adkins, B. R. Cartwright, and K. L. Friedman (2008), Yeast est2p affects telomere length by influencing association of rap1p with telomeric chromatin. Molecular and Cellular Biology, Vol. 28, pp. 2380-2390. https://doi.org/10.1128/MCB.01648-07
  6. KHOA(Korea Hydrographic and Oceanographic Agency)(2023), Ocean Data in Grid Framework. Available at http://www.khoa.go.kr/oceangrid/gis/category/reference/distribution.do.
  7. Kim, B. C., J. Y. Lee, J. S. Choi, W. M. Heo, and S. B. Park(2008) Fish kill caused by eutrophication and stratification in a brackish coastal Lagoon, Korean Society of Water & Wastewater Joint Fall Forum Paper, pp. 23-24.
  8. Kim, T. Y. and H. S. Yoon(2011), Skill assessments for evaluating the performance of the hydrodynamic model, Journal of the Korean Society for Marine Environment & Energy, Vol. 14, Issue 2, pp. 107-113. https://doi.org/10.7846/JKOSMEE.2011.14.2.107
  9. KMA National Climate Data Center(2023) Open MET Data Portal. Available at https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36.
  10. Ministry of Environment Republic of Korea(2020), Saemangeum Lake sediment monitoring (VIII).
  11. Ministry of Environment Republic of Korea(2021), Water quality impact analysis and reduction measure according to Saemangeum salinity/water temperature stratification.
  12. Nahas, E. L., C. B. Pattiaratchi, and G. N. Ivey(2005), Processes controlling the position of frontal systems in Shark Bay, Western Australia, Estuarine, Coastal and Shelf Science, Vol. 65, Issue 3, pp. 463-474. https://doi.org/10.1016/j.ecss.2005.06.017
  13. Oh, C. S. and J. H. Choi(2015), Consideration on changes of density stratification in Saemangeum reservoir, Journal of the Korean Society for Marine Environment and Energy, Vol. 18, Issue 2, pp. 81-93. https://doi.org/10.7846/JKOSMEE.2015.18.2.81
  14. Oh, C. S., J. H. Choi, and Y. K. Cho(2013), Numerical simulation on hydrodynamic characterization changes associated with the construction of dikes and dredging operations in Saemangeum Lake, Journal of Environmental Science International, Vol. 22, Issue 9, pp. 1115-1129. https://doi.org/10.5322/JESI.2013.22.9.1115
  15. Pae, Y. S., S. H. Choi, E. T. Kang, S. H. Kim, and C. H. Kang(2009), Growth characteristic of stratification in Saemangeum Lake, Proceedings of the Korean Society of Agricultural Engineers Conference, pp. 180-180.
  16. Park, S. H., J. G. Kim, G. O. Myung, and M. S. Kwon(2023), Relationship between phytoplankton distribution and salinity in the giant artificial brackish Lake Saemangeum, Ecohydrology & Hydrobiology, Vol. 23, Issue 2, pp. 251-260. https://doi.org/10.1016/j.ecohyd.2023.01.003
  17. Schroeder, W. A., L. M. Kay, and R. S. Mills(1990), Spectrophotometric analysis of amino acids using ninhydrin chemical reaction, Analytical Chemistry, Vol. 22, pp. 760-760. https://doi.org/10.1021/ac60042a007
  18. Scully, M. E., C. Friedrichs, and J. Brubaker(2005), Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field, Estuaries, Vol. 28, pp. 321-326. https://doi.org/10.1007/BF02693915
  19. Souza, A. J. and J. H. Simpson(1997), Controls on stratification in the Rhine ROFI system, Journal of Marine Systems, Vol. 12, Issues 1-4, pp. 311-323.  https://doi.org/10.1016/S0924-7963(96)00105-4