• 제목/요약/키워드: Sacrificial layer

검색결과 94건 처리시간 0.03초

3차원 마이크로 디바이스 개발을 위한 나노 스테레오리소그래피 공정 개발에 관한 연구 (Development of Nano-Stereolithography Process for Precise Fabrication of Three-Dimensional Micro-Devices)

  • 박상후;임태우;양동열;이신욱;공홍진;이광섭
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권1호
    • /
    • pp.45-49
    • /
    • 2006
  • A nano-stereolithography (NSL) process has been developed for the fabrication of three-dimensional (3D) micro-devices with high spatital resolution of approximately 100 nm. In the NSL process, a complicated 3D structure can be created by stacking layer-by-layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D stacked structure was finished, unsolidified liquid resins were rinsed by ethanol to develop the fabricated structures; then, the polymerized structure was only left on the glass substrate. Through this work, several 3D microstructures such as a micro-channel, shell structures, and photonic crystals were fabricated to evaluate the possibility of the developed system.

Improved Responsivity of an a-Si-based Micro-bolometer Focal Plane Array with a SiNx Membrane Layer

  • Joontaek, Jung;Minsik, Kim;Chae-Hwan, Kim;Tae Hyun, Kim;Sang Hyun, Park;Kwanghee, Kim;Hui Jae, Cho;Youngju, Kim;Hee Yeoun, Kim;Jae Sub, Oh
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.366-370
    • /
    • 2022
  • A 12 ㎛ pixel-sized 360 × 240 microbolometer focal plane array (MBFPA) was fabricated using a complementary metaloxide-semiconductor (CMOS)-compatible process. To release the MBFPA membrane, an amorphous carbon layer (ACL) processed at a low temperature (<400 ℃) was deposited as a sacrificial layer. The thermal time constant of the MBFPA was improved by using serpentine legs and controlling the thickness of the SiNx layers at 110, 130, and 150 nm on the membrane, with response times of 6.13, 6.28, and 7.48 msec, respectively. Boron-doped amorphous Si (a-Si), which exhibits a high-temperature coefficient of resistance (TCR) and CMOS compatibility, was deposited on top of the membrane as an IR absorption layer to provide heat energy transformation. The structural stability of the thin SiNx membrane and serpentine legs was observed using field-emission scanning electron microscopy (FE-SEM). The fabrication yield was evaluated by measuring the resistance of a representative pixel in the array, which was in the range of 0.8-1.2 Mohm (as designed). The yields for SiNx thicknesses of SiNx at 110, 130, and 150 nm were 75, 86, and 86%, respectively.

InGaP/GaAs 이중접합 기반의 고효율 플렉시블 태양전지 제조기술 연구 (Flexible InGaP/GaAs Double-Junction Solar Cells Transferred onto Thin Metal Film)

  • 문승필;김영조;김강호;김창주;정상현;신현범;박경호;박원규;안연식;강호관
    • Current Photovoltaic Research
    • /
    • 제4권3호
    • /
    • pp.108-113
    • /
    • 2016
  • III-V compound semiconductor based thin film solar cells promise relatively higher power conversion efficiencies and better device reliability. In general, the thin film III-V solar cells are fabricated by an epitaxial lift-off process, which requires an $Al_xGa_{1-x}As$ ($x{\geq}0.8$) sacrificial layer and an inverted solar cell structure. However, the device performance of the inversely grown solar cell could be degraded due to the different internal diffusion conditions. In this study, InGaP/GaAs double-junction solar cells are inversely grown by MOCVD on GaAs (100) substrates. The thickness of the GaAs base layer is reduced to minimize the thermal budget during the growth. A wide band gap p-AlGaAs/n-InGaP tunnel junction structure is employed to connect the two subcells with minimal electrical loss. The solar cell structures are transferred on to thin metal films formed by Au electroplating. An AlAs layer with a thickness of 20 nm is used as a sacrificial layer, which is removed by a HF:Acetone (1:1) solution during the epitaxial lift-off process. As a result, the flexible InGaP/GaAs solar cell was fabricated successfully with an efficiency of 27.79% under AM1.5G illumination. The efficiency was kept at almost the same value after bending tests of 1,000 cycles with a radius of curvature of 10 mm.

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF

열구동형 폴리실리콘 마이크로 액츄에이터의 제작 및 특성분석 (Fabrication of Thermally-Driven Polysilicon Microactuator and Its Characterization)

  • Lee, J.H.;Lee, C.S.;Yoo, H.J.
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.153-159
    • /
    • 1997
  • A thermally-driven polysilicon microactuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS(tetraethylorthosilicate) oxide as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And newly developed HF GPE(gas-phase etching) process was also employed to eliminate the troublesome stiction problem using anhydrous HF gas and CH$_{3}$OH vapor, and successfully fabricated the microactuators. The actuation is incurred by the thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon microactuator was experimentally conformed as large as 21 .mu. m at the input voltage level of 10V and 50Hz square wave. The actuating characteris- tics are also compared with the simulalted results considering heat transfer and thermal expansion in the polysilicon layer. This microactuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as microrelay, which requires large displacement or contact force but relatively slow response.

  • PDF

Negative Thick Photoresist를 이용한 $100{\mu}m$ 높이의 금속 구조물의 제작에 관한 연구 (Fabrication of $100{\mu}m$ High Metallic Structure Using Negative Thick Photoresist and Electroplating)

  • 장현기;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2541-2543
    • /
    • 1998
  • This paper describes the fabrication process to fabricate metallic structure of high aspect ratio using LlGA-like process. SU-8 is used as an electroplating mold. SU-8 is an epoxy-based photoresist, designed for ultrathick PR structure with single layer coating [1,2]. We can get more than $100{\mu}m$ thick layer by single coating with conventional spin coater, and applying multiple coating can make thicker layers. In the experiments, we used different kinds of SU-8, having different viscosity. To optimize the conditions for mold fabrication process, experiments are performed varying spinning time and speed, soft-bake, develop and PEB (Post Expose Bake) condition. With the optimized condition, minimum line and space of $3{\mu}m$ pattern with a thickness of $40{\mu}m$ and $4{\mu}m$ pattern with a thickness of $130{\mu}m$ were obtained. Using the patterned PR as a plating mold, metallic structure was fabricated by electroplating. We have fabricated a electroplated nickel comb actuator using SU-8 as plating mold. The thickness of PR mold is $45{\mu}m$ and that of plated nickel is$40{\mu}m$. Minimum line of the mold is $5{\mu}m$. Patterned metallic layer or polymer layer, which has selectivity with the structural plated metallic layer, can be used as sacrificial layer for fabrication of free-standing structure.

  • PDF

Latch-up 특성을 갖는 평면형의 열구동 마이크로 액츄에이터 (A thermoelastic microactuator with planar latch-up operation)

  • 이종현;권호남;전진철;이선규;이명래;장원익;최창억;김윤태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.865-868
    • /
    • 2001
  • We designed and fabricated a planner-type thermoelastic microactuator with a latch-up operation for optical switching. Latch-up actuation is prerequisite to implement an optical switch with low power consumption and high reliability. The proposed microactuator consists of four cantilever-shaped thermal actuators, four displacement linkages, two shallow arch-shaped leaf springs, a mobile shuttle mass with a micromirror, and four elastic boundaries. The structural layer of the planar microactuator is phosphorous-doped 12$\mu\textrm{m}$-thick polysilicon, and the sacrificial layer is LTO(Low Temperature Oxide) of 3$\mu\textrm{m}$thickness. The displacement of actuator is as large as 3$\mu\textrm{m}$when the length of actuation bar is 100$\mu\textrm{m}$in length at 5V input voltage. The proposed microactuators have advantages of easy assembly with other optical component by way of fiber alignment in the substrate plane, and its fabrication process features simplicity while retaining batch-fabrication economy.

  • PDF

Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance

  • Lee, Dayoung;Jung, Jin-Young;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.192-197
    • /
    • 2014
  • A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificial silicon dioxide ($SiO_2$) template and chemical activation using potassium hydroxide (KOH) were employed to prepare these materials. The morphology of the well-developed pore structure was characterized using field-emission scanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specific surface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specific capacitance and the retained capacitance ratio were measured. The specific capacitances and the retained capacitance ratio were enhanced, depending on the $SiO_2$ concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.

고온 M/NEMS용 3C-SiC 마이크로 히터 특성 (The characteristics of polycrystalline 3C-SiC microhotplates for high temperature M/NEMS)

  • 정재민;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.252-252
    • /
    • 2008
  • The microhotplates consisting of a Pt-ased heating element on AlN/poly 3C-SiC layers were fabricated. The microhotplate has a $600{\mu}m{\times}600{\mu}m$ square shaped membrane which made of $1{\mu}m$ thick ploycrystalline 3C-SiC suspended by four legs. 3C-SiC is known for excellent chemical durability, mechanical strength and sustaining of high temperature. The membrane is fabricated by surface micromachining using oxidized Si sacrificial layer. The Pt thin film is used for heating material and resist temperature sensor. The fabrication methodology allows intergration of an array of heating material and resist temperature detector. For reasons of a short response time and a high sensitivity a uniform temperature profile is desired. The dissipation of microhotplate was examined by a IR thermoviewer and the power consumption was measured. Measured and simulated results are compared and analyzed. Thermal characterization of the microhotplates shows that significant reduction in power consumption was achieved using suspended structure.

  • PDF

열풍동형 폴리실리콘 마이크로 액츄에이터의 제작 및 특성 분석 (Fabrication of thermally driven polysilicon micro actuator and its characterization)

  • 이종현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.146-150
    • /
    • 1996
  • A thermal micro actualtor has been fabricated using surface micromachining techniques. It consists of doped ploysilicon as a moving part and TEOS(Tetra Ethyl Ortho Silicate) as a sacrificial layer. The polysilicon was annealed for the reduction of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE(vapor phase etching)process was also used as an effective release method for the elimination of sacrificaial layer. With noliquid involved during any of the steps for relasing, unlike other reported relase techniques, the HF VPE pocess has produced polysilicon microstructures with virtually no process-induced stiction problem. The actuation is incured by the thermal expasion due to current flow in active polysilicon cantilever, which motion is amplified bylever mechanism. The thickness of pllysilicon is 2 .mu. m and the length of active and passive polysilicon cantilever are 500 .mu. m, respectively. The moving distance of polysilicon actuator was experimentally conformed as large as 21 .mu. m at the input voltage level of 10 V and 50Hz square wave. These micro actuator technology can be utilized for the fabrication of MEMS (microlectromechanical system) such as microrelay, which requires large displacement or contact force but relatively slow response.

  • PDF