• Title/Summary/Keyword: Sacrificial anode cathodic protection

Search Result 44, Processing Time 0.04 seconds

A Study on the Characteristics of Cathodic Protection by Al-Alloy Sacrificial Anode in Marine Environment (해양환경중에서 A1-합금희생양극에 의한 음극방식특성)

  • 이연호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 1992
  • In this study, cathodic protection experiment was carried out by Al-alloy sacrificial anode in marine environments which have specific resistance($\rho$) if 25~7000$\Omega$.cm and investigated protection potential, current density and loss rate of Al-alloy sacrificial anode. The main results resistance($\rho$) of 400$\Omega$.cm, the cathodic protection potential appears high about-720 mV(SCE). But below specific resistance($\rho$) of 300$\Omega$.cm, the cathodic protection potential appears low about-770 mV(SCE) and simultaneously, cathode is protected sufficiently. 2) The loss rate of Al-Alloy sacrificial anode became large with decreasing specific resistance and increasing the ratio(A sub(c)/A sub(a) of bared surface area of anode and cathode. 3) The loss rate of Al-alloy sacrificial anode(w) to the mean current density of anode(i) is as follows. w=ai+b (a, b : experimental constants)

  • PDF

Critical Design Issues on the Cathodic Protection Systems of Ships

  • Lee, Ho Il;Lee, Chul Hwan;Jung, Mong Kyu;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.90-95
    • /
    • 2007
  • Cathodic protection technology has been widely used on ship's outer hull and inner side of ballast water tanks as a supplementary corrosion protection measure in combination with protective organic coatings. Impressed current cathodic protection system is typically opted for the ship's hull and, sacrificial anode system, for ballast water tanks. The anticipation and interest in cathodic protection system for ships has been surprisingly low-eyed to date in comparison with protective coatings. Computational analysis for the verification of cathodic protection design has been tried sometimes for offshore marine structures, however, in commercial shipbuilding section, decades old design practice is still applied, and no systematic or analytical verification work has been done for that. In this respect, over-rotection from un-erified initial design protocol has been also concerned by several experts. Especially, it was frequently reported in sacrificial anode system that even after full design life time, anode was remaining nearly intact. Another issue for impressed current system, for example, is that the anode shield area design for ship's outer hull should be compromised with actual application situation, because the state-of-the-art design equation is quite impractical from the applicator's stand. Besides that, in this study, some other critical design issues for sacrificial anode and impressed current cathodic protection system were discussed.

The effect of cathodic protection system by means of zinc sacrificial anode on pier in Korea

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1206-1211
    • /
    • 2014
  • This study has been conducted to confirm the effect of sacrificial anode cathodic protection system for 90 days to protect corrosion on pier that is located in Korea. The cathodically protected structure was a slab and a pile cap. Before the construction of cathodic protection system, the macrography was carried out. As a result of the macrography, many corrosion traces were confirmed in this structure. The trace was mainly focused on joint and zones that concrete cover was eliminated. To apply the cathodic protection system, many onsite techniques have been adopted. In addition, to confirm the inner state of steel in concrete properly, a corrosion monitoring sensor (DMS-100, Conclinic Co. Ltd) has been applied. Test factors were corrosion & cathodic protection potential, 4 hour depolarization potential, resistivity and current density. After 90 days from the installation of cathodic protection system, it could confirm that proper corrosion protection effect was obtained by considering the result of tests.

Cathodic Protection of Onshore Buried Pipelines Considering Economic Feasibility and Maintenance

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.158-168
    • /
    • 2016
  • During the installation of crude oil or gas pipelines, which pass through onshore buried pipelines or onshore pipeline from subsea pipeline to onshore plant, countermeasures need to be implemented so as to ensure a sufficient design life by protecting the steel pipes against corrosion. This can be achieved through impressed current cathodic protection method for onshore pipelines and through galvanic sacrificial anode corrosion protection method for offshore pipelines. In particular, in the case of impressed current cathodic protection, isolation joint flanges should be used. However, this makes maintenance control difficult with its installation having a negative impact on price. Therefore, in this study, the most suitable methodology for onshore pipeline protection between galvanic sacrificial anode corrosion protection and impressed current cathodic protection method will be introduced. In oil and gas transportation facilities, the media can be carried to the end users via onshore buried and/or offshore pipeline. It is imperative for the field operators, pipeline engineers, and designers to be corrosion conscious as the pipelines would undergo material degradations due to corrosion. The mitigation can be achieved with the introduction of an impressed current cathodic protection method for onshore buried pipelines and a galvanic sacrificial anode corrosion protection method for offshore pipelines. In the case of impressed current cathodic protection, isolation joint flanges should be used to discontinuity. However, this makes maintenance control to be difficult when its installation has a negative impact on the price. In this study, the most suitable corrosion protection technique between galvanic sacrificial anode corrosion protection and impressed current cathodic protection is introduced for (economic life of) onshore buried pipeline.

Effect of the Chathodic Protection in Concrete by Applying Sacrificial Anode System (희생양극방식을 응용한 콘크리트 중의 철근의 전기방식 효과)

  • 김성수;김홍삼;김진철;김종필;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.87-92
    • /
    • 2001
  • Reinforced concrete have defect in durability due to carbonation, freezing and thawing, and penetration of chloride ions with time in spite of superb structure. Especially steel corrosion in concrete due to penetration of chloride ions have result in a marked decline in service life. The principal purpose in this study is to see effect of sacrificial anode cathodic system, one of the electrochemical methods in order to the control of steel corrosion in concrete. There are chloride content in concrete in cracked and no cracked specimen with cathodic protection. To recognize the effect of sacrificial anode cathodic protection, Instant-off potential are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

Effects of the Protection for Rebars by Embeded Sacrificial Anode in Concrete (희생양극재의 매입에 의한 콘크리트 중의 전기방식 효과)

  • 김성수;김홍삼;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1207-1212
    • /
    • 2001
  • Reinforced concrete has defects in durability due to carbonation, freezing and thawing, and penetration of chloride ions with elapse of time in spite of super structure. Especially steel corrosion in concrete due to penetration of chloride ions has result in a severe decline in service life. The principal purpose of this study is to estimate effects of sacrificial anode cathodic system, one of the electrochemical methods in order to control of steel corrosion in concrete. There are chloride content in concrete in cracked and non cracked specimen with cathodic protection. To investigate the effect of sacrificial anode cathodic protection, potential-decay with current density, corrosion ratio, etc. are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

A Study on Mitigation of Rail Corrosion using Sacrificial Anode Cathodic Protection Method (희생양극법을 이용한 레일부식 저감 방안에 관한 연구)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Lee, Kyu-Yong;Kim, Young-Ki;Park, Jong-Yoon;Song, Bong-Hwan;Seol, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.54-60
    • /
    • 2017
  • A railway rail will be corroded by the repetitive sea wind and fog in the splash and tidal zone such as Youngjong grand bridge. And these rusts of rail could be increased by increasing service period, and it frequently occurred the safety accidents or disorders in electrical problem. In this study, the sacrificial anode cathodic protection method was proposed as a measures for reducing the corrosion of the railway rails in the oceanic climate conditions. As the results of immersion test using the salt water during four months, the sacrificial anode cathodic protection method using the aluminum anode(Al-anode) was evaluated that a distinct effect on corrosion reduction in the rails. Therefore the sacrificial anode cathodic protection method was experimentally proven that a disorders in aspects electric and signal of railway operation condition such as direct fixation track system in Youngjong grand bridge could be prevented by reducing rust falling from the rail. In addition, the installation conditions of the anodes directly affect the transmission range of corrosion potential, the sectional loss of anode, and the corrosion reduction effect. Therefore, to expect the corrosion reduction effect of rails under the oceanic climate conditions for railway track, it was important to adopted the appropriate spacing of anode installation by considering the actual field conditions.

Apparatus on Corrosion Protection and Marine Corrosion of Ship (선박의 해양 부식과 부식방지 장치)

  • Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.105-116
    • /
    • 2011
  • Ships and offshore structures are exposed to harsh marine environments, and maintenance and repair are becoming increasingly important to the industry and the economy. The major corrosion phenomenons of metals and alloys in marine environment are pitting corrosion, stress corrosion cracking, crevice corrosion, fatigue corrosion, cavitation-erosion and etc. due to the effect of chloride ions and is quite serious. Methods of protection against corrosion can generally be divided into two groups: anodic protection and cathodic protection. Anodic protection is limited to the passivity characteristics of a material in its environment, while cathodic protection can apply methods such as sacrificial anode cathodic protection and impressed current cathodic protection. Sacrificial anode methods using Al and Zn alloys are widely used for marine structures and vessels intended for use in seawater. Impressed current cathodic protection methods are also widely used in marine environments, but tend to generate problems related to hydrogen embrittlement caused by hydrogen gas generation. Therefore, it is important to the proper maintenance and operation of the various corrosion protection systems for ship in the harsh marine environment.

A Study on the Application of Cathodic Protection for Anti-Corrosion of Automobile Body

  • Sohn, DaeHong;lee, Yongho;Jang, HeeJin;Cho, SooYeon
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The use of cathodic protection for metals can be achieved by sacrificial anode CP or impressed current CP, or a combination of both. Cathodic protection is a highly effective anti-corrosion technique for submerged metals or metals in soil. But because the non-immersion atmospheric automobile environment is a high resistance environment, it is limited by fundamental cathodic protection. However, the application of cathodic protection to automobiles is attractive because of the possibility of maintaining corrosion resistance while using lower-cost materials. A commercially available product for automobiles that uses both sacrificial anode CP and impressed current CP was tested in a periodic salt spray environment to investigate the performance of the devices. Experimental results show that the metal to be protected has different anti-corrosion effects depending on the distance from the anode of the device, but it is effective for the entire 120 cm long specimen exposed with one anode. The cathodic protection is effective because the conductive tape attached to the anode of the structure to be protected acts as a constant electrolyte in wet and dry conditions. The results show that the entire standard passenger car can be protected by cathodic protection with 4 anodes.

Study on the Corrosionproofing in Concrete by Cathodic Protection (전위변화에 의한 콘크리트내의 철근방식에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.213-220
    • /
    • 1999
  • The purpose of this study is to apply cathodic protection to reinforced concrete structure and provide fundamental data to prevent the corrosion. The theory of cathodic protection of steel in concrete is to apply sufficient direct current so that corroding anodes on the steel are prevented from discharging ions. Two methods are used to supply the external current. In one, the protected metal is the cathode by connecting it to a more active metal. In the second, an external direct current power source supplies the current. The first is the sacrificial-anode system and the second the impressed-current system. The study results showed that the corrosion of the reinforcing steel in concrete could be enormously decreased by using protective current. The sacrificial anode and concrete nave to be adhered closely each in order to prevent the corrosion of reinforcing steel.

  • PDF