• Title/Summary/Keyword: Saccharification

Search Result 372, Processing Time 0.032 seconds

Optimal Conditions of Saccharification for a Traditional Malt Syrup in Cheju (제주 전통엿 제조를 위한 최적당화조건)

  • Kim, Hyo-Sun;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.659-664
    • /
    • 1994
  • Waxy rice, Oryza sativa, and foxtail millet, Setaria italitica, and mixture (1 : 1, w/w) of the cereals were saccharified by barley malt. The optimum conditions of saccharification were at $50^{\circ}C$ for 3 hrs on waxy rice and $55^{\circ}C$for 3 hrs on foxtail millet, respectively. The equilibrium of saccharification were reached at $20^{\circ}Brix$ on waxy rice and mixture, and $17^{\circ}Brix$ in foxtail millet. The free sugars in saccharifying liquids were found maltose, glucose and fructose with the contents of ca. 13%, 1% and trace, respectively, by HPLC analysis. The close relationships (r=0.954) between $^{\circ}{Brix}$ and reducing sugar of saccharifying liquids were observed. The result may be useful for the estimation of the end point of the saccharification.

  • PDF

Bioethanol production using batch reactor from foodwastes (회분식 반응기에서 음식물쓰레기를 이용한 바이오에탄올 생산)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Park, Hong-Sun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.609-614
    • /
    • 2010
  • In the present study, bioethanol was produced using batch style reactor from food wastes which has organic characteristics. Pretreatment was required to reduce its particle size and produce fermentable sugar. Two different enzymes such as carbohydrase and gulcoamylase were tested for saccharification of food waste. The efficiency of carbohydrase saccharification (0.63 g/g-TS) has shown higher than glucoamylase saccharification(0.42 g/g-TS). Saccharomyces cerevisiae produced bioethanol via separate hydrolysis & fermentation (SHF) method and simultaneous saccharification fermentation (SSF) method. The production amount of bioethanol was 0.27 g/$L{\cdot}hr$ for SHF and 0.44 g/$L{\cdot}hr$ for SSF.

Enhancing mechanism of the saccharification of uncooked starch in an agitated bead reaction system (무증자전분의 분쇄마찰매체에 의한 효소당화촉진 Mechanism의 규명)

  • 조구형;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.407-413
    • /
    • 1986
  • In an agitated bead reaction system, the enzymatic saccharification of uncooked starch was substantially enhanced. The enhancement mechanism was investigated front the view of the structural aspect of starch. The mechanical impact caused by the movement of the attrition-milling media resulted neither the destruction of microcrystalline structure nor the fragmentation of starch granule. instead, the most distinct phenomenon was the swelling of starch granule up to about 2.5 times, and the swelling mechanism was not similar with that caused by cooking. However, in the case of the enzyme addition in the attrition coupled reaction system, the swollen starch was easily fragmented into the large number of small particles by the synergistic action of the enzyme and milling-media. The exposed surface area of the fragmented particles plays the major role in enhancing the saccharification. The saccharification rate was quite different depending on the source of starch, the reason was discussed in terms of the granular structure of uncooked starches.

  • PDF

Saccharification and Fermentation Capability of the Waste from Beer Fermentation Broth (맥주 폐 효모액의 당화 및 에탄올 발효능)

  • Kang, MinKyung;Kim, Minah;Yu, Bowan;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.709-715
    • /
    • 2013
  • The waste from beer fermentation broth (WBFB) has been found an excellent and inexpensive resource for bioethanol production. We tried to evaluate the saccharification and fermentation capabilities of WBFB to confirm its effectiveness for bioethanol production. The saccharification potentials of the WBFB were evaluated at various temperatures (30, 40, 50, 60 and $70^{\circ}C$). It was found that the saccharification capabilities increased with temperature and highest reached maximum at $60^{\circ}C$ and $70^{\circ}C$ after 4h. Ethanol production from a mixture of WBFB and chemically defined media (CDM) without addition of any microbial species confirmed the fermentation capabilities of WBFB. Simultaneous saccharification and fermentation were performed using WBFB, starch solution and CDM as culturing media. The maximum yield of bioethanol production was obtained at $30^{\circ}C$. The saccharifying enzymes and the yeast cells present in WBFB were essential factors for the production of bioethanol from WBFB without any additional enzymes or microbial cells.

Saccharification of Brown Macroalgae Using an Arsenal of Recombinant Alginate Lyases: Potential Application in the Biorefinery Process

  • Gimpel, Javier A.;Ravanal, Maria Cristina;Salazar, Oriana;Lienqueo, Maria Elena
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1671-1682
    • /
    • 2018
  • Alginate lyases (endo and exo-lyases) are required for the degradation of alginate into its constituting monomers. Efficient bioethanol production and extraction of bioactives from brown algae requires intensive use of these enzymes. Nonetheless, there are few commercial alginate lyase preparations, and their costs make them unsuitable for large scale experiments. A recombinant expression protocol has been developed in this study for producing seven endo-lyases and three exo-lyases as soluble and highly active preparations. Saccharification of alginate using 21 different endo/exo-lyase combinations shows that there is complementary enzymatic activity between some of the endo/exo pairs. This is probably due to favorable matching of their substrate biases for the different glycosidic bonds in the alginate molecule. Therefore, selection of enzymes for the best saccharification results for a given biomass should be based on screens comprising both types of lyases. Additionally, different incubation temperatures, enzyme load ratios, and enzyme loading strategies were assessed using the best four enzyme combinations for treating Macrocystis pyrifera biomass. It was shown that $30^{\circ}C$ with a 1:3 endo/exo loading ratio was suitable for all four combinations. Moreover, simultaneous loading of endo-and exo-lyases at the beginning of the reaction allowed maximum alginate saccharification in half the time than when the exo-lyases were added sequentially.

Production of Rice Straw Based Cellulosic Ethanol Using Acidic Saccharification (산당화과정을 이용한 볏짚으로부터 셀룰로스 에탄올의 제조)

  • Lee, Seung-Bum;Jung, Soo-Kyung;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.349-352
    • /
    • 2010
  • The production process of cellulosic ethanol from rice straw using acidic saccharification was studied in this experimental work. The hydration by ultrasonic energy and the acidic saccharification using 10~30 wt% of $H_2SO_4$ were performed as pretreatment processes. Also, 10~50 wt% of yeast for 3~6 days was used for fermentation process. The yield of cellulosic ethanol was decided in the fermentation process. The optimum pretreatment condition was 375W of ultrasonic power and 30 min of hydration time using 20 wt% of $H_2SO_4$ and 2 h of the acidic saccharification time. Finally, the optimum fermentation condition was at the condition of 30 wt% of yeast and 3 days of fermentation time.

The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels (과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향)

  • Lee, Seung Bum;Kim, Hyungjin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.619-623
    • /
    • 2014
  • The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.

Physicochemical characteristics of beer with rice nuruk

  • Kang, Sun-a;Kwon, Ye-seul;Jeong, Seok-tae;Choi, Han-seok;Im, Bo-ra;Yeo, Su-hwan;Kang, Ji-eun
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.229-234
    • /
    • 2020
  • Beer production with rice or other malt substitutes suffers from a lack of suitable enzymes for saccharification. For this reason, rice nuruk (fermentation starter) was tested as a starch replacement for malt in the saccharification process of beer production. The results of this study show that the enzyme activities of rice nuruk made with brewing fungi were higher than those of malt. Saccharification and glucoamylase activities were high in Aspergillus awamori KCCM 30790 and α-amylase activity was high in Aspergillus oryzae CF1003. Overall, malt beer had significantly higher alcohol, pH, total acid, volatile acids, amino acids, free amino nitrogen, bitterness unit and ΔE than rice nuruk beer. Where as Aspergillus awamori KCCM 30790 beer had significantly higher soluble solids, reducing sugar than malt beer. According to a sensory evaluation, malt beer was better color, flavor and Aspergillus oryzae CF1003 beer was better taste, texture, overall acceptability than other beer. Therefore Aspergillus awamori KCCM 30790 beer was suitable considering enzyme activities (saccharification, glucoalmylase) and physicochemical characteristics (soluble solids, reducing sugar). And then Aspergillus oryzae CF1003 beer was suitable considering sensory evaluation (taste, texture, overall acceptability). Therefore rice nuruk like Aspergillus awamori KCCM 30790 and Aspergillus oryzae CF1003 were suitable as a substitute material that can replace for malt in beer proceccing.

Simultaneous Saccharification and Fermentation of Ground Corn Stover for the Production of Fuel Ethanol Using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011

  • Vincent, Micky;Pometto III, Anthony L.;Leeuwen, J. (Hans) Van
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.703-710
    • /
    • 2011
  • Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.

Study on the Preparation of Kochujang with Utilization of Retrogradated Starch food (노화된 전분식품을 이용한 고추장 제조에 관한 연구)

  • 차은정;김경자
    • Korean journal of food and cookery science
    • /
    • v.12 no.4
    • /
    • pp.481-486
    • /
    • 1996
  • This study was compared with conventional kochujang and the preparation of saccharification kochujanf with the utilization of waste cooked rice, rice cake, bread. Saccharification kochuiang tested to estimated the pH, reducing sugar and changes of organic acid conients, sensory evaluation during the aging at 60 days. Moisture content were increased about B-10% nd crude fat contents were decreased about 20-40% during the aging at 60 days. Change of pH value of kochujang reduces gradually from pH 5.0 up to pH 4.7 during the aging. Total reducing sugar contents of saccharification kochujang reached maximum value at 50 days. The Products of organic acids of during aging were acetic acid, lactic acid, malic acid, tartaric acid and citric acid of the chief of source. Sensory evaluation conducted by fifteen students as panelists showed that were at 1% level significant difference 7 samples in color, flavour, apperance.

  • PDF