Browse > Article
http://dx.doi.org/10.4014/jmb.1010.10044

Simultaneous Saccharification and Fermentation of Ground Corn Stover for the Production of Fuel Ethanol Using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011  

Vincent, Micky (Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak)
Pometto III, Anthony L. (Department of Food Science and Human Nutrition, Clemson University)
Leeuwen, J. (Hans) Van (Department of Civil, Construction, and Environmental Engineering, Iowa State University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 703-710 More about this Journal
Abstract
Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.
Keywords
Phanerochaete chrysosporium; Gloeophyllum trabeum; Saccharomyces cerevisiae; Escherichia coli K011; solid subtrate fermentation; simultaneous saccharification and fermentation (SSF);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Hendriks, A. T. W. M. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18.   DOI   ScienceOn
2 Keating, J. D., C. Panganiban, and S. D. Mansfield. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206.   DOI   ScienceOn
3 Kerem Z., K. A. Jensen Jr, and K. E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446: 49-54.   DOI   ScienceOn
4 Kersten, P. and D. Cullen. 2007. Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Gen. Biol. 44: 77-87.   DOI   ScienceOn
5 Keshwani, D. R. and J. J. Cheng. 2009. Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 100: 1515-1523.   DOI   ScienceOn
6 Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 83: 1-11.   DOI   ScienceOn
7 He, X., Y. Miao, X. Jiang, Z. Xu, and P. Ouyang. 2010. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Appl. Biochem. Biotechnol. 160: 2449-2457.   DOI   ScienceOn
8 Gebler, J. C., R. Aebersold, and S. G. Withers. 1992. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) ${\beta}-galactosidase$ from Escherichia coli. J. Biol. Chem. 267: 11126- 11130.
9 Ghose, T. K. 1987. Measurement of cellulase activites. Pure Appl. Chem. 59: 257-268.   DOI
10 Su, D., J. Sun, P. Liu, and Y. Lu. 2006. Effects of different pretreatment modes on the enzymatic digestibility of corn leaf and corn stalk. Chin. J. Chem. Eng. 14: 796-801.   DOI   ScienceOn
11 Suzuki, H., K. Igarashi, and M. Samejima. 2008. Real-time quantitative analysis of carbon catabolite derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 80: 99-106.   DOI   ScienceOn
12 Varga, E., H. B. Klinke, K. Rczey, and A. B. Thomsen. 2004. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol. Bioeng. 88: 567-574.   DOI   ScienceOn
13 Vogel, K. P., J. F. Pedersen, S. D. Masterson, and J. J. Toy. 1999. Evaluation of a filter bag system for NDF, ADF and IVDMD forage analysis. Crop Sci. 39: 276-279.   DOI   ScienceOn
14 Weiss, N. D., J. D. Farmer, and D. J. Schell. 2010. Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresour. Technol. 101: 674-678.   DOI   ScienceOn
15 Wymelenberg, A. V., G. Sabat, B. Martinez, A. S. Rajangam, T. T. Teeri, J. Gaskell, P. J. Kersten, and D. Cullen. 2005. The Phanerochaete chrysosporium secretome: Database predictions and initial mass spectrometry peptide identifications in cellulosegrown medium. J. Biotechnol. 118: 17-34.   DOI   ScienceOn
16 Shrestha, P., M. Rasmussen, S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2008. Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J. Agric. Food Chem. 56: 3918-3924.   DOI   ScienceOn
17 Shrestha, P., S. K. Khanal, A. L. Pometto, and J. (Hans) van Leeuwen. 2010. Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresour. Technol. 101: 8698-8705.   DOI   ScienceOn
18 Sokhansanj, S., A. Turhollow, J. Cushman, and J. Cundi. 2002. Engineering aspects of collecting corn stover for bioenergy. Biomass Bioenergy 23: 347-355.   DOI   ScienceOn
19 Sorensen, A., P. J. Teller, T. Hilstrom, and B. K. Ahring. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour. Technol. 99: 6602-6607.   DOI   ScienceOn
20 Selig, M. J., T. B. Vinzant, M. E. Himmel, and S. R. Decker. 2009. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol. 155: 397-406.
21 Shrestha, P., S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2009. Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by hydrolysate fermentation to ethanol. J. Agric. Food Chem. 57: 4156-4161.   DOI   ScienceOn
22 Kumar, R. and C. E. Wyman. 2009. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol. Bioeng. 103: 252-267.   DOI   ScienceOn
23 Salaspuro, V., S. Nyfors, R. Heine, A. Siitonen, M. Salaspuro, and H. Jousimies-Somer. 1999. Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions. Scand. J. Gastroenterol. 34: 967-973.   DOI   ScienceOn
24 Sanchez, C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185-194.   DOI   ScienceOn
25 Saqib, A. A. N. and P. J. Whitney. 2006. Role of fragmentation activity in cellulose hydrolysis. Int. Biodeterior. Biodegrad. 58: 180-185.   DOI   ScienceOn
26 Rasmussen, M. L., P. Shrestha, S. K. Khanal, A. L. Pometto III, and J. (Hans) van Leeuwen. 2010. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour. Technol. 101: 3526-3533.   DOI   ScienceOn
27 Nguyen, M. T., S. P. Choi, J. Lee, J. H. Lee, and S. J. Sim. 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19: 161-166.   DOI
28 Okuyama, M., A. Kaneko, H. Mori, S. Chiba, and A. Kimura. 2005. Structural elements to convert Escherichia coli alpha xylosidase (YicI) into alpha-glucosidase. FEBS Lett. 580: 2707- 2711.
29 Park, Y. W. and H. D. Yun. 1999. Cloning of the Escherichia coli endo-1,4-D-glucanase gene and identification of its product. Mol. Gen. Genet. 261: 236-241.   DOI   ScienceOn
30 Kim, T. H., N. P. Nghiem, and K. B. Hicks. 2009. Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Appl. Biochem. Biotechnol. 153: 171-179.   DOI   ScienceOn
31 Lim, K. N. 2004. Conversion of lignocellulosic biomass to fuel ethanol - A brief review. The Planter 80: 517-524.
32 Liu, S., K. A. Skinner-Nemec, and T. D. Leathers. 2008. Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J. Ind. Microbiol. Biotechnol. 35: 75-81.   DOI   ScienceOn
33 Yang, C. P., Z. Q. Shen, G. Yu, and J. L. Wang. 2008. Effect and after effect of radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour. Technol. 99: 6240-6245.   DOI
34 Pordesimo, L. O., B. R. Hames, S. Sokhansanj, and W. C. Edens. 2005. Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 28: 366-374.   DOI   ScienceOn
35 Ramos, L. P. 2003. The chemistry involved in the steam pretreatment of lignocellulosic materials. Quim. Nova 26: 863- 871.   DOI   ScienceOn
36 Martinez, D., L. F. Larrondo, N. Putnam, M. D. Sollewijn- Gelpke, K. Huang, J. Chapman, et al. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. 22: 695-700.   DOI   ScienceOn
37 Mussatto, S. I., M. Fernandes, A. M. F. Milagres, and I. C. Roberto. 2008. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme Microb. Technol. 43: 124-129.   DOI   ScienceOn
38 Nigam, J. N. 2001. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol. 87: 17-27.   DOI   ScienceOn
39 Liu, H., M. Yan, C. Lai, L. Xu, and P. Ouyang. 2010. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160: 574-582.   DOI   ScienceOn
40 Yang, B., D. M. Willies, and C. E. Wyman. 2006. Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol. Bioeng. 94: 1122-1128.   DOI   ScienceOn
41 Yu, J., J. Zhang, J. He, Z. Liu, and Z. Yu. 2009. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour. Technol. 100: 903-908.   DOI   ScienceOn
42 García-Cubero, M. T., G. González-Benito, I. Indacoechea, M. Coca, and S. Bolado. 2009. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour. Technol. 100: 1608-1613.   DOI   ScienceOn
43 Abbas, A., H. Koc, F. Liu, and M. Tien. 2005. Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet. 47: 49-56.   DOI   ScienceOn
44 Adney, B. and J. Baker. 2008. Measurement of Cellulase Activities. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42628. Available at http://www.nrel.gov/ biomass/pdfs/42628.pdf.
45 Antai, S. P. and D. L. Crawford. 1981. Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains. Appl. Environ. Microbiol. 42: 378-380.
46 de La Torre Ugarte, D. G., M. E. Walsh, H. Shapouri, and S. P. Slinsky. 2003. The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture. Agricultural Economic Report No. 816. U. S. Department of Agriculture, Economic Research Service, U. S. Government Printing Office, Washington, DC.
47 Donohoe, B. S., M. J. Selig, S. Viamajala, T. B. Vinzant, W. S. Adney, and M. E. Himmel. 2009. Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy. Biotechnol. Bioeng. 103: 480-489.   DOI   ScienceOn
48 Duguid, K. B., M. D. Montross, C. W. Radtke, C. L. Crofcheck, L. M. Wendt, and S.A. Shearer. 2009. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresour. Technol. 100: 5189-5195.   DOI   ScienceOn
49 Eliasson, A., C. Christensson, C. F. Wahlbom, and B. H. Gerdal. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66: 3381-3386.   DOI   ScienceOn
50 Galbe, M. and G. Zacchi. 2007. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 41-65.
51 Chundawat, S. P. S., B. Venkatesh, and B. E. Dale. 2007. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. 96: 219-231.   DOI   ScienceOn
52 Arantes, V. and A. M. F. Milagres. 2006. Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. J. Chem. Technol. Biotechnol. 81: 413-419.   DOI   ScienceOn
53 Brekke, K. 2005. The promise of cellulosic ethanol. Ethanol Today 6: 32-35.
54 Cantarella, M., L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Progress 20: 200-206.
55 Cohen, R., M. R. Suzuki, and K. E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71: 2412-2417.   DOI   ScienceOn
56 Crawford, D. L. and A. L. Pometto III. 1988. Acid-precipitable polymeric lignin: Production and analysis. Methods Enzymol. 161: 35-47.
57 Daniel, G., J. Volc, L. Filonova, O. Plíhal, E. Kubátov, and P. Halada. 2007. Characteristics of alcohol oxidase from the fungus Gloeophyllum trabeum, an extracellular source of H2O2 in brown rot decay of wood. Appl. Environ. Microbiol. 73: 6241-6253.   DOI   ScienceOn