• Title/Summary/Keyword: SYBR green

Search Result 71, Processing Time 0.03 seconds

Real-Time PCR for Quantitative Detection of Bovine Herpesvirus Type 1 (Bovine Herpesvirus Type 1 정량 검출을 위한 Real-Time PCR)

  • Lee, Dong-Hyuck;Jeong, Hyo-Sun;Lee, Jung-Hee;Kim, Tae-Eun;Lee, Jung-Suk;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biopharmaceuticals, tissue engineered products, and cell therapy. Manufacturing processes for the biologicals using bovine materials have the risk of viral contamination. Therefore viral validation is, essential in ensuring the safety of the products. Bovine herpesvirus type 1 (BHV-1) is the most common bovine pathogen found in bovine blood, cell, tissue, and organ. In order to establish the validation system for the BHV-1 safety of the products, a real-time PCR method was developed for quantitative detection of BHV-1 in raw materials, manufacturing processes, and final products as well as BHV-1 clearance validation. Specific primers for amplification of BHV-1 DNA was selected, and BHV-1 DNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $2\;TCID_{50}/ml$. The real-time PCR method was validated to be reproducible and very specific to BHV-1. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BHV-1. BHV-1 DNA could be quantified in CHO cell as well as culture supernatant. Also the real-time PCR assay could detect $10\;TCID_{50}/ml$ of BHV-1 artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BHV-1 contamination during the manufacture of biologics.

Real-Time RT-PCR for Validation of Reovirus Type 3 Safety During the Manufacture of Mammalian Cell Culture-Derived Biopharmaceuticals (세포배양 유래 생물의약품 생산 공정에서 Reovirus Type 3 안전성 검증을 위한 Real-Time RT-PCR)

  • Lee, Dong-Hyuck;Jeong, Hyo-Sun;Kim, Tae-Eun;Oh, Seon-Hwan;Lee, Jung-Suk;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.228-236
    • /
    • 2008
  • Validation of viral safety is essential in ensuring the safety of mammalian cell culture-derived biopharmaceuticals, because numerous adventitious viruses have been contaminated during the manufacture of the products. Mammalian cells are highly susceptible to Reovirus type 3 (Reo-3), and there are several reports of Reo-3 contamination during the manufacture of biopharmaceuticals. In order to establish the validation system for the Reo-3 safety, a real-time RT-PCR method was developed for quantitative detection of Reo-3 in cell lines, raw materials, manufacturing processes, and final products as well as Reo-3 clearance validation. Specific primers for amplification of Reo-3 RNA was selected, and Reo-3 RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $3.2{\times}10^0\;TCID_{50}/ml$. The real-time RT-PCR method was proven to be reproducible and very specific to Reo-3. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with Reo-3. Reo-3 RNA could be quantified in CHO cell as well as culture supernatant. When the real-time RT-PCR assay was applied to the validation of virus removal during a virus filtration process, the result was similar to that of virus infectivity assay. Therefore, it was concluded that this rapid, specific, sensitive, and robust assay could replace infectivity assay for detection and clearance validation of Reo-3.

The Detection and Diagnosis Methods of Infectious Viroids caused Plant Diseases (식물체에 감염성 질병을 유발하는 바이로이드 검출 및 진단 방법)

  • Lee, Se Hee;Kim, Yang-Hoon;Ahn, Ji-Young
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.620-631
    • /
    • 2016
  • Viroids are about 250-400 base pair of short single strand RNA fragments have been associated with economically important plant diseases. Due to the lack of protein expression capacity associated with replication, it is very difficult to diagnosis viroid diseases in serological methods. For detecting viroid at plants, molecular-based techniques such as agarose gel electrophoresis, polyacrylamide gel electrophoresis (PAGE), DNA-hybridization, blotting analysis and conventional RT-PCR are reliable. Real-time RT-PCR methods that grafted on RT-PCR methods with improved confirmation methods have been also utilized. However, they are still labor-intensive, time-consuming, and require personnel with expertise. Loop-mediated Isothermal Amplification (LAMP) method is a nucleic acid amplification method under the isothermal condition. The LAMP methodology has been reported to be simple, rapid, sensitive and field applicable in detecting a variety of pathogens. The results of LAMP method can be colorized by adding a visible material such as SYBR green I, Evagreen, Calcein, Berberine and Hydroxy naphthol blue (HNB) with simple equipment or naked eyes. The combination of LAMP method and nucleic pathogens, viroids, can be used to realize simple diagnosis platform for the genetic point-of care testing system. The aim at this review is to summary viroid-caused diseases and the simple visible approach for diagnosing viroids using Loop-mediated Isothermal Amplification (LAMP) method.

Effects of EGFR, CK19, CK20 and Survinin Gene Expression on Radiotherapy Results in Patients with Locally Advanced Head and Neck Cancer

  • Kekilli, Kezban Esra;Abakay, Candan Demioz;Tezcan, Gulcin;Tunca, Berrin;Egeli, Unal;Saraydaroglu, Ozlem;Esbah, Onur;Ekinci, Ahmet Siyar;Arslan, Sonay;Uslu, Nuri;Ozkan, Lutfi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.3023-3027
    • /
    • 2015
  • Purpose: To investigate the effects of epidermal growth factor receptor (EGFR), cytokeratin 19 (CK19), cytokeratin 20 (CK20) and survinin gene expression on local control (LC) and overall survival (OS) in patients with locally advanced head and neck cancer (LAHNC) who were administered radiotherapy (RT). Materials and Methods: Twenty-six patients who were admitted to Uludag University Medical Faculty Department of Radiation Oncology with a diagnosis of LAHNC (GIII-GIV) were included in this study. Gene expression was evaluated in tumor tissues and peripheral blood. RNA isolation was performed on paraffinized tumor tissues and peripheral blood samples obtained before RT (BR). The densities of the obtained RNAs were analyzed at 260/280 nm. cDNA samples obtained from total RNA,EGFR, CK19, CK20 and survinin gene expression levels were assessed via the Sybr Green method and data were analyzed with the ${\Delta}{\Delta}Ct$ method. The same process was repeated for peripheral blood samples taken after RT (AR). Results: The female/male ratio was 3:23 and the mean age was 56.5 years (38-75years). After radiotherapy, CK19 and CK20 levels in the peripheral blood were found to be correlated according to Pearson correlation analysis(p=0.049). This result indicates a possibility of remaining positive for CK19 and CK20 in the peripheral blood even after RT in patients with CK19, CK20, and EGFR positive tumors before RT. There was a statistically significant correlation between survinin levels measured BR and AR (p=0.028). Conclusions: In this study, we found that patients with any EGFR, CK19, CK20 or survinin positivity in their peripheral blood obtain less benefit from radiotherapy. A wider patient population and advanced protein analyses are necessary in order to increase the reliability of our findings.

Assessment of the Prognostic Value of Methylation Status and Expression Levels of FHIT, GSTP1 and p16 in Non-Small Cell Lung Cancer in Egyptian Patients

  • Haroun, Riham Abdel-Hamid;Zakhary, Nadia Iskandar;Mohamed, Mohamed Ragaa;Abdelrahman, Abdelrahman Mohamed;Kandil, Eman Ibrahim;Shalaby, Kamal Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4281-4287
    • /
    • 2014
  • Background: Methylation of tumor suppressor genes has been investigated in all kinds of cancer. Tumor specific epigenetic alterations can be used as a molecular markers of malignancy, which can lead to better diagnosis, prognosis and therapy. Therefore, the aim of this study was to evaluate the association between gene hypermethylation and expression of fragile histidine triad (FHIT), glutathione S-transferase P1 (GSTP1) and p16 genes and various clinicopathologic characteristics in primary non-small cell lung carcinomas (NSCLC). Materials and Methods: The study included 28 primary non-small cell lung carcinomas, where an additional 28 tissue samples taken from apparently normal safety margin surrounding the tumors served as controls. Methylation-specific polymerase chain reaction (MSP) was performed to analyze the methylation status of FHIT, GSTP1 and p16 while their mRNA expression levels were measured using a real-time PCR assay with SYBR Green I. Results: The methylation frequencies of the genes tested in NSCLC specimens were 53.6% for FHIT, 25% for GSTP1, and 0% for p16, and the risk of FHIT hypermethylation increased among patients with NSCLC by 2.88, while the risk of GSTP1 hypermethylation increased by 2.33. Hypermethylation of FHIT gene showed a highly significant correlation with pathologic stage (p<0.01) and a significant correlation with smoking habit and FHIT mRNA expression level (p<0.05). In contrast, no correlation was observed between the methylation of GSTP1 or p16 and smoking habit or any other parameter investigated (p>0.05). Conclusions: Results of the present study suggest that methylation of FHIT is a useful biomarker of biologically aggressive disease in patients with NSCLC. FHIT methylation may play a role in lung cancer later metastatic stages while GSTP1 methylation may rather play a role in the early pathogenesis.

Detection of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus using duplex real-time PCR assay with melting curve analysis on fresh lettuce

  • Lee, Na-Ri;Kwon, Kyung-Yoon;Choi, Sung-Wook;Koo, Min-Seon;Chun, Hyang-Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.114-119
    • /
    • 2011
  • In this study, two duplex real-time PCR approach with melting curve analysis is presented for the detection of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus, which are important food-borne bacterial pathogens usually present in fresh and/or minimally processed vegetables. Reaction conditions were adjusted for the simultaneous amplification and detection of specific fragments in the ${\beta}$-glucuronidase (uidA, E. coli), thermonuclease (nuc, S. aureus), hemolycin (hly, L. monocytogenes) and tetrathionate reductase (ttr, Salmonella spp.) genes. Melting curve analysis using a SYBR Green I real-time PCR approach showed characteristic $T_m$ values demonstrating the specific and efficient amplification of the four pathogens; $80.6{\pm}0.9^{\circ}C$, $86.9{\pm}0.5^{\circ}C$, $80.4{\pm}0.6^{\circ}C$ and $88.1{\pm}0.11^{\circ}C$ for S. aureus, E. coli O157:H7, L. monocytogenes and Salmonella spp., respectively. For all the pathogens, the two duplex, real-time PCR was equally sensitive to uniplex real-time PCR, using same amounts of purified DNA, and allowed detection of 10 genome equivalents. When our established duplex real-time PCR assay was applied to artificially inoculated fresh lettuce, the detection limit was $10^3$ CFU/g for each of these pathogens without enrichment. The results from this study showed that the developed duplex real-time PCR with melting curve analysis is promising as a rapid and cost-effective test method for improving food safety.

Lipogenesis Gene Expression Profiling in Longissimus dorsi on the Early and Late Fattening stage of Hanwoo (한우 비육 전·후기의 등심조직에 있어서 지방합성 유전자 발현)

  • 이승환;박응우;조용민;김경훈;오영균;이지혜;이창수;오성종;윤두학
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.345-352
    • /
    • 2006
  • Korean native cattle (Hanwoo) have a good capacity to produce heavily marbled meat of high value. The intramuscular fat in Hanwoo is known to be deposit from 12 months of age by degree of slightly visible and significantly developed in 28 months of age. Lipogenesis gene expression profiling in longissimus dorsi at early and late fattening stage will be helpful to understand the mechanism of intramuscular fat deposition in skeletal muscle. Therefore, we analysed the gene expression patterns of six genes related lipid metabolism (FABP4, GLUT4, LPL, ACC, ACL and SCD) between early and late fattening stage. The mRNA expression of FABP4 at late fattening stage (27 months old) was higher about 3.0 fold than at early fattening stage (12 months old) in each three individuals of Hanwoo. However, GLUT4 mRNA expression was not different at late fattening stage compared with at early fattening stage. On the other hand, The expression patterns of LPL, ACC, ACL and SCD genes related lipid metabolism were significantly over-expressed about 3.5 fold, 2.7 fold, 3.7 fold and 7.5 fold at late fattening stage, respectively. Thus, these results suggested that lipogenesis in skeletal muscle at late fattening stage is due to increasing uptake of fatty acid by FABP4 and lipogenesis gene expression such as LPL, ACC, ACL and SCD.

Establishment of a Tm-shift Method for Detection of Cat-Derived Hookworms

  • Fu, Yeqi;Liu, Yunqiu;Abuzeid, Asmaa M.I.;Huang, Yue;Zhou, Xue;He, Long;Zhao, Qi;Li, Xiu;Liu, Jumei;Ran, Rongkun;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Melting temperature shift ($T_m-shift$) is a new detection method that analyze the melting curve on real-time PCR thermocycler using SYBR Green I fluorescent dye. To establish a $T_m-shift$ method for the detection of Ancylostoma ceylanicum and A. tubaeforme in cats, specific primers, with GC tail of unequal length attached to their 5' end, were designed based on 2 SNP loci (ITS101 and ITS296) of the internal transcribed spacer 1 (ITS1) sequences. The standard curve of $T_m-shift$ was established using the standard plasmids of A. ceylanicum (AceP) and A. tubaeforme (AtuP). The $T_m-shift$ method stability, sensitivity, and accuracy were tested with reference to the standard curve, and clinical fecal samples were also examined. The results demonstrated that the 2 sets of primers based on the 2 SNPs could accurately distinguish between A. ceylanicum and A. tubaeforme. The coefficient of variation (CV) of $T_m$- values of AceP and AtuP was 0.07% and 0.06% in ITS101 and was 0.06% and 0.08% in ITS296, respectively. The minimum detectable DNA concentration was $5.22{\times}10^{-6}$ and $5.28{\times}10^{-6}ng/{\mu}l$ samples of AceP and AtuP, respectively. The accuracy of $T_m-shift$ method reached 100% based on examination of 10 hookworm DNA samples with known species. In the clinical detection of hookworm in 69 stray cat fecal sample, the $T_m-shift$ detection results were consistent with the microscopic examination and successfully differentiated between the 2-hookworm species. In conclusion, the developed method is a rapid, sensitive and accurate technique and can provide a promising tool for clinical detection and epidemiological investigation of cat-derived hookworms.

Monitoring Culicine Mosquitoes (Diptera: Culicidae) as a Vector of Flavivirus in Incheon Metropolitan City and Hwaseong-Si, Gyeonggi-Do, Korea, during 2019

  • Bahk, Young Yil;Park, Seo Hye;Kim-Jeon, Myung-Deok;Oh, Sung-Suck;Jung, Haneul;Jun, Hojong;Kim, Kyung-Ae;Park, Jong Myong;Ahn, Seong Kyu;Lee, Jinyoung;Choi, Eun-Jeong;Moon, Bag-Sou;Gong, Young Woo;Kwon, Mun Ju;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.5
    • /
    • pp.551-558
    • /
    • 2020
  • The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquitoes or tick vectors and are etiological agents of acute zoonotic infections. The viruses are found around the world and account for significant cases of human diseases. We investigated population of culicine mosquitoes in central region of Korean Peninsula, Incheon Metropolitan City and Hwaseong-si. Aedes vexans nipponii was the most frequently collected mosquitoes (56.5%), followed by Ochlerotatus dorsalis (23.6%), Anopheles spp. (10.9%), and Culex pipiens complex (5.9%). In rural regions of Hwaseong, Aedes vexans nipponii was the highest population (62.9%), followed by Ochlerotatus dorsalis (23.9%) and Anopheles spp. (12.0%). In another rural region of Incheon (habitat of migratory birds), Culex pipiens complex was the highest population (31.4%), followed by Ochlerotatus dorsalis (30.5%), and Aedes vexans vexans (27.5%). Culex pipiens complex was the predominant species in the urban region (84.7%). Culicine mosquitoes were identified at the species level, pooled up to 30 mosquitoes each, and tested for flaviviral RNA using the SYBR Green-based RT-PCR and confirmed by cDNA sequencing. Three of the assayed 2,683 pools (989 pools without Anopheles spp.) were positive for Culex flaviviruses, an insect-specific virus, from Culex pipiens pallens collected at the habitats for migratory birds in Incheon. The maximum likelihood estimation (the estimated number) for Culex pipiens pallens positive for Culex flavivirus was 25. Although viruses responsible for mosquito-borne diseases were not identified, we encourage intensified monitoring and long-term surveillance of both vector and viruses in the interest of global public health.

Development of a real-time polymerase chain reaction assay for reliable detection of a novel porcine circovirus 4 with an endogenous internal positive control

  • Kim, Hye-Ryung;Park, Jonghyun;Park, Ji-Hoon;Kim, Jong-Min;Baek, Ji-Su;Kim, Da-Young;Lyoo, Young S.;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • A novel porcine circovirus 4 (PCV4) was recently identified in Chinese and Korean pig herds. Although several conventional polymerase chain reaction (cPCR) and real-time PCR (qPCR) assays were used for PCV4 detection, more sensitive and reliable qPCR assay is needed that can simultaneously detect PCV4 and internal positive control (IPC) to avoid false-negative results. In the present study, a duplex qPCR (dqPCR) assay was developed using primers/probe sets targeting the PCV4 Cap gene and pig (glyceraldehyde-3-phosphate dehydrogenase) GAPDH gene as an IPC. The developed dqPCR assay was specifically detected PCV4 but not other PCVs and porcine pathogens, indicating that the newly designed primers/probe set is specific to the PCV4 Cap gene. Furthermore, GAPDH was stably amplified by the dqPCR in all tested viral and clinical samples containing pig cellular materials, indicating the high reliability of the dqPCR assay. The limit of detection of the assay 5 copies of the target PCV4 genes, but the sensitivity of the assay was higher than that of the previously described assays. The assay demonstrated high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 1.0%. Clinical evaluation using 102 diseased pig samples from 18 pig farms showed that PCV4 circulated in the Korean pig population. The detection rate of PCV4 obtained using the newly developed dqPCR was 26.5% (27/102), which was higher than that obtained using the previously described cPCR and TaqMan probe-based qPCR and similar to that obtained using the previously described SYBR Green-based qPCR. The dqPCR assay with IPC is highly specific, sensitive, and reliable for detecting PCV4 from clinical samples, and it will be useful for etiological diagnosis, epidemiological study, and control of the PCV4 infections.