Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.5.620

The Detection and Diagnosis Methods of Infectious Viroids caused Plant Diseases  

Lee, Se Hee (Department of Microbiology, Chungbuk National University)
Kim, Yang-Hoon (Department of Microbiology, Chungbuk National University)
Ahn, Ji-Young (Department of Microbiology, Chungbuk National University)
Publication Information
Journal of Life Science / v.26, no.5, 2016 , pp. 620-631 More about this Journal
Abstract
Viroids are about 250-400 base pair of short single strand RNA fragments have been associated with economically important plant diseases. Due to the lack of protein expression capacity associated with replication, it is very difficult to diagnosis viroid diseases in serological methods. For detecting viroid at plants, molecular-based techniques such as agarose gel electrophoresis, polyacrylamide gel electrophoresis (PAGE), DNA-hybridization, blotting analysis and conventional RT-PCR are reliable. Real-time RT-PCR methods that grafted on RT-PCR methods with improved confirmation methods have been also utilized. However, they are still labor-intensive, time-consuming, and require personnel with expertise. Loop-mediated Isothermal Amplification (LAMP) method is a nucleic acid amplification method under the isothermal condition. The LAMP methodology has been reported to be simple, rapid, sensitive and field applicable in detecting a variety of pathogens. The results of LAMP method can be colorized by adding a visible material such as SYBR green I, Evagreen, Calcein, Berberine and Hydroxy naphthol blue (HNB) with simple equipment or naked eyes. The combination of LAMP method and nucleic pathogens, viroids, can be used to realize simple diagnosis platform for the genetic point-of care testing system. The aim at this review is to summary viroid-caused diseases and the simple visible approach for diagnosing viroids using Loop-mediated Isothermal Amplification (LAMP) method.
Keywords
Diagnosis; Loop-mediated isothermal amplification (LAMP); plant disease; RNA infectious agents; viroid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Desvignes, J. C. 1999. Pear blister canker viroid: host range and improved bioassay with two new pear indicators, fieud 37 and fieud 110. Plant Dis. 83, 419-422.   DOI
2 Diener, T. O. 1989. Circular RNAs: relics of precellular evolution? Proc. Natl. Acad. Sci. USA 86, 9370-9374.   DOI
3 Elleuch, A., Marrakchi, M., Fakhfakh, H., Levesque, D., Bessais, N. and Perreault, J. P. 2003. Molecular Variability of Citrus Exocortis Viroid in a Single Naturally Infected Citrus Tree. Plant Protect. Sci. 39, 139-145.
4 Fadda, Z., Daros, J. A., Fagoaga, C., Flores, R. and Duran-Vila, N. 2003. Eggplant latent viroid, the candidate type species for a new genus within the family Avsunviroidae (hammerhead viroids). J. Virol. 77, 6528-6532.   DOI
5 Fawcett, H. S. and Klotz, L. J. Exocortis on trifoliate orange. 1948. http://ucce.ucdavis.edu/files/repositoryfiles/ca210p13-71287.pdf.
6 Fischbach, J., Xander, N. C., Frohme, M. and Glökler, J. F. 2015. Shining a light on LAMP assays—A comparison of LAMP visualization methods including the novel use of berberine. BioTechniques 58, 189.
7 Flores, R., Hernandez, C., Llacer, G. and Desvignes, J. C. 1991. Identification of a new viroid as the putative causal agent of pear blister canker disease. J. Gen. Virol. 72,1199-1204.   DOI
8 Fonseca, M. E., Marcellino, L. H. and Gander, E. 1996. A rapid and sensitive dot-blot hybridization assay for the detection of citrus exocortis viroid in Citrus medica with digoxigenin-labelled RNA probes. J. Virol. Methods 57, 203-207.   DOI
9 Graca, J. V. da. and van Lelyveld, L. J. Peroxidase and indole3-acetic acid oxidase activities and isoenzymes in the mature bark of sunblotch-infected avocado (Persea americana). J. Phytopathol. 92, 143-149.   DOI
10 Hadidi, A., Flores, R., Randles, J. W. and Semancik, J. S. 2003. Viroids, Properties, Detection, Diseases and their Control. pp. 37-141: CSIRO Publishing, California. USA.
11 Hadidi, A. and Yang, X. 1990. Detection of pome fruit viroids by enzymatic cDNA amplification. J. Virol. Methods 30, 261-269.   DOI
12 Hafner, G. J., Yang, I. C., Wolter, L. C., Stafford, M. R. and Giffard, P. M. 2001. Isothermal amplification and multimerization of DNA by Bst DNA polymerase. Biotechniques 30, 852-856, 858, 860.
13 Hashimoto, J. and Koganezawa, H. 1987. Nucleotide sequence and secondary structure of apple scar skin viroid. Nucleic Acids Res. 15, 7045-7052.   DOI
14 Hernández, C., Elena, S. F., Moya, A. and Flores, R. 1992. Pear blister canker viroid is a member of the apple scar skin subgroup (apscaviroids) and also has sequence homology with viroids from other subgroups. J. Gen. Virol. 73, 2503.   DOI
15 Higuchi, R., Dollinger, G., Walsh, P. S. and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (NY) 10, 413-417.   DOI
16 Horne, W. T. and Parker, E. R. 1930. The Avocado disease called sun-blotch. Phytopathology 20, 852.
17 Horst, R. K. and Kawamoto, S. O. 1980. Use of polyacrylamide Gel electrophoresis for Chrysanthemum Stunt Viroid in Infected Tissues. Plant Dis. 64, 186-188.   DOI
18 Ito, T. and Yoshida, K. 1998. Reproduction of apple fruit crinkle disease symptoms by apple fruit crinkle viroid. Acta Horticulturae 472, 587-594.
19 Jo, Y., Yoo, S. H., Chu, H., Cho, J. K., Choi, H., Yoon, J. Y., Choi, S. K. and Cho, W. K. 2015. Complete genome sequences of peach latent mosaic viroid from a single peach cultivar. Genome Announc. 3, e01098-15.   DOI
20 Keese, P. and Symons, R. H. 1985. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc. Natl. Acad. Sci. USA 82, 4582-4586.   DOI
21 Kim, D. H. Kim, H. R. Heo, S. Kim, S. H. Kim, M. Shin, I. S. Kim, J. H. Cho, K. H. and Hwang, J. H. 2010. Occurrence of Apple Scar Skin viroid and Relative Quantity Analysis Using Real-time RT-PCR. Res. Plant Dis. 16, 247-253.   DOI
22 Kim, W. S., Haj Ahmada, Y., Stobbsb, L. W. and Greigb, N. 2015. Evaluation of viroid extraction methods and application of a one-step reverse transcription real-time polymerase chain reaction assay (RT-qPCR) for the rapid detection of Chrysanthemum stunt viroid (CSVd) infection. Can. J. Plant Pathol. 37, 221-229.   DOI
23 Lee, D., Kim, E. J., Kilgore, P. E., Kim, S. A., Takahashi, H., Ohnishi, M., Anh, D. D., Dong, B. Q., Kim, J. S., Tomono, J., Miyamoto, S., Notomi, T., Kim, D. W. and Seki, M. 2015. Clinical evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid. PLoS One 10, e0122922.   DOI
24 Lenarčič, R., Morisset, D., Mehle, N. and Ravnikar, M. 2013. Fast real-time detection of Potato spindle tuber viroid by RT-LAMP. Plant Pathol. 62, 1147-1156.   DOI
25 Lin, Z., Zhang, Y., Zhang, H., Zhou, Y., Cao, J. and Zhou, J. 2012. Comparison of loop-mediated isothermal amplification (LAMP) and real-time PCR method targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Vet. Parasitol. 185, 296-300.   DOI
26 Marcelo, E., Maria Luisa, P. N.,Targon, T. V. M., Fajardo, R. F. and Elliot W. K. 2006. Citrus exocortis viroid and Hop Stunt viroid Doubly Infecting Grapevines in Brazil. Fitopatol. bras. 31, 440-446.   DOI
27 Nakahara, K., Hataya, T. and Uyeda, I. 1999. A simple, rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridizaiton and RT-PCR. J. Virol. Methods 77, 47-58.   DOI
28 Mishra, M. D., Hammond, R. W., Owens, R. A., Smith, D. R. and Diener, T. O. 1991. Indian bunchy top disease of tomato plants is caused by a distinct strain of citrus exocortis viroid. J. Gen. Virol. 72, 1781-1785.   DOI
29 Mousumi, D., Godavarthi, B. K. S. P. and Prakash, S. B. 2010. Molecular Diagnostics: Promises and Possibilities, pp. 132: Springer Science+Business Media LLC. Springer, New York, USA.
30 Mullis, K. B. 1990. The unusual origin of the polymerase chain reaction. Sci. Am. 262, 56-61, 64-55.   DOI
31 Narayanasamy, P. 2001. Plant Pathogen Detection and Disease Diagnosis. pp. 197-257, 2nd ed. : CRC Press, Florida, USA.
32 Nathalie, A., Jose, F. M., Guy, M., Thierry, C. and Vicente, P. 1996. Studies on the diagnosis of hop stunt viroid in fruit trees: identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. Eur. J. Plant Pathol. 102, 837-846.   DOI
33 Nikon, V., Oxana, K., Maria, P. and Christina, V. 2012. Comparison of direct-RT-PCR and dot-blot hybridization for the detection of Potato spindle tuber viroid in natural host plant species. Eur. J. Plant Pathol. 134, 859-864.   DOI
34 Nome, C., Giagetto, A., Rossini, M., Di Feo, L. and Nieto, A. 2012. First report and molecular analysis of Apple scar skin viroid in sweet cherry. New Dis. Rep. 25, 3.   DOI
35 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, E63.   DOI
36 Park, J., Jung, Y., Kil, E. J., Kim, J., Thi Tran, D., Choi, S. K., Yoon, J. Y., Cho, W. K. and Lee, S. 2013. Loop-mediated isothermal amplification for the rapid detection of Chrysanthemum chlorotic mottle viroid (CChMVd). J. Virol. Methods 193, 232-237.   DOI
37 Ohtsuka, Y. 1987. On Manshu-sabika-byo of apple, graft transmission and symptom variation in cultivars. J. Jpn. Soc. Hortic. Sci. 9, 282-286.
38 Owens, R. A. 2008. Identification of viroids by gel electrophoresis. Curr. Protoc. Microbiol. 16, 1.1-1.9.
39 Palukaitis, P., Hatta, T., Alexander, D. M. and Symons, R. H. 1979. Characterization of a viroid associated with avocado sunblotch disease. Virology 99, 145-151.   DOI
40 Petersson, B., Nielsen, B. B., Rasmussen, H., Larsen, I. K., Gajhede, M., Nielsen, P. E. and Kastrup, J. S. 2005. Crystal structure of a partly selfcomplementary peptide nucleic acid (PNA) oligomer showing a duplex–triplex network. J. Am. Chem. Soc. 127, 1424-1430.   DOI
41 Pringle, C. R. 1998. The universal system of virus taxonomy of the International Committee on Virus Taxonomy (ICTV), including new proposals ratified since publication of the Sixth ICTV Report in 1995. Arch. Virol. 143, 203-210.   DOI
42 Puchta, H. and Sanger, H. L. 1988. An improved procedure for the rapid one-step-cloning of full-length viroid cDNA. Arch. Virol. 101, 137-140.   DOI
43 Reuther, W., Calavan, E. C. and Carmen, G. E. 1989. The Citrus Industry, Vol. V., http://websites.lib.ucr.edu/agnic/webber/citrus_history.pdf.
44 Rizza, S., Nobile, G., Tessitori, M., Catara, A. and Conte, E. 2009. Real time RT-PCR assay for quantitative detection of Citrus viroid III in plant tissues. Plant Pathol. 58, 181-185.   DOI
45 Sänger, H. L. 1988. Viroids And Viroid Diseases. Acta Horticulturae. 234. 10.17660/ActaHortic.1988.234.9.   DOI
46 Rodolfo, U., Clara, P., Juan, R. A., Fernando, R. and Gabriela, P. 2013. Evaluation of four viroid RNA extraction methods for the molecular diagnosis of CEVd in Citrus lemon using RT-PCR, Dot blot and Northern blot. Biotecnología Aplicada. 30, 125-130.
47 Rohde, W. and Sanger, H. L. 1981. Detection of complementary RNA intermediates of viroid replication by Northern blot hybridization. Biosci. Rep. 1, 327-336.   DOI
48 Running, C. M. and Schnell, R. J. 1996. Detection of avocado sunblotch viroid and estimation of infection among accessions in the national germplasm collection for avocado. Proc. Fla. State Hort. Soc. 109, 235-237.
49 Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. 1988. Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.   DOI
50 Sano, T., Barba, M., Li, S. F. and Hadidi, A. 2010. Viroids and RNA silencing: mechanism, role in viroid pathogenicity and development of viroid-resistant plants. GM Crops. 1, 80-86.
51 Sano, T., Hataya, T. and Shikata, E. 1988. Complete nucleotide sequence of a viroid isolated from Etrog citron, a new member of hop stunt viroid group. Nucleic Acids Res. 16, 347.   DOI
52 Semancik, J. S. and Szychowski, J. A. 1994. Avocado sunblotch disease: a persistent viroid infection in which variants are associated with differential symptoms. J. Gen. Virol. 75, 1543-1549.   DOI
53 Serra, P., Barbosa, C. J., Daros, J. A., Flores, R. and Duran-Vila, N. 2008. Citrus viroid V: molecular characterization and synergistic interactions with other members of the genus Apscaviroid. Virology 370, 102-112.   DOI
54 Singh, R. P. 2014. The discovery and eradication of potato spindle tuber viroid in Canada. Virusdisease 25, 415-424.   DOI
55 Shamloula, A. M., Hadidia, A., Zhua, S. F., Singhb, R. P. and Sagredoc, B. 1997. Sensitive detection of potato spindle tuber viroid using RT-PCR and identification of a viroid variant naturally infecting pepino plants. Can. J. Plant. Pathol. 19, 89-96.   DOI
56 Shikata, E. 1990. New viroids from Japan. Sem. Virol. 1, 107-115.
57 Shirato, K., Yano, T., Senba, S., Akachi, S. Kobayashi, T., Nishinaka, T., Notomi, T. and Matsuyama, S. 2014. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol. J. 11, 139.   DOI
58 Singh, R. P., Dilworth, A. D., Baranwal, V. K. and Gupta, K. N. 2006. Detection of Citrus exocortis viroid, Iresine viroid, and Tomato chlorotic dwarf viroid in New Ornamental Host Plants in India. Plant Dis. 90, 1457.
59 Sugiyama, H., Yoshikawa, T., Ihira, M., Enomoto, Y., Kawana, T. and Asano, Y. 2005. Comparison of loop-mediated isothermal amplification, real-time PCR, and virus isolation for the detection of herpes simplex virus in genital lesions. J. Med. Virol. 75, 583-587.   DOI
60 Baumstark, A. R. S. T. and Riesner, D. 1997. Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. J. EMBO 16, 599.   DOI
61 Tsutsumi, N., Yanagisawa, H., Fujiwara, Y. and Ohara, T. 2010. Detection of potato spindle tuber viroid by reverse transcription loop-mediated isothermal amplification. Res. Bull. Pl. Prot. Japan 46, 61-67.
62 Wang, D. G., Brewster, J. D., Paul, M. and Tomasula, P. M. 2015. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20, 6048-6059.   DOI
63 Tuma, R. S., Beaudet, M. P., Jin, X., Jones, L. J., Cheung, C. Y., Yue, S. and Singer, V. L. 1999. Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Anal. Biochem. 268, 278-288.   DOI
64 Visvader, J. E. and Symons, R. H. 1983. Comparative sequence and structure of different isolates of citrus exocortis viroid. Virology 130, 232-237.   DOI
65 Visvader, J. E. and Symons, R. H. 1985. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res. 13, 2907-2920.   DOI
66 Wang, W., Chen, K. and Xu, C. 2006. DNA quantification using EvaGreen and a real-time PCR instrument. Anal. Biochem. 356, 303-305.   DOI
67 Weathers, L. G., Greer, F. C. J. and Harjung, M. K. 1967. Transmission of exocortis virus of citrus to herbaceous plants. Plant Dis. Rep. 51, 868-887.
68 Weidemann, H. and Buchta, U. 1998. A simple and rapid method for the detection of potato spindle tuber viroid (PSTVd) by RT-PCR. Potato Res. 41, 1-8.   DOI
69 Wu, Y. H., Cheong, L. C., Meon, S., Lau, W. H., Kong, L. L., Joseph, H. and Vadamalai, G. 2013. Characterization of Coconut cadang-cadang viroid variants from oil palm affected by orange spotting disease in Malaysia. Arch. Virol. 158, 1407-1410.   DOI
70 Yamamoto, H., Kaqaml, Y., Kurokawa, M., Nishimura, S. Ukawa, S. and Kubo, S. 1973. Studies on hop stunt disease in Japan. Report of the Research Laboratories of Kirin Brewery Co., Ltd. 16, 49-62.
71 Bustin, S. A., Benes, V., Nolan, T. and Pfaffl, M. W. 2005. Quantitative real-time RT-PCR--a perspective. J. Mol. Endocrinol. 34, 597-601.   DOI
72 Zhang, G., Brown, E. W. and Gonzalez-Escalona, N. 2011. Comparison of real-time PCR, reverse transcriptase realtime PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Appl. Environ. Microbiol. 77, 6495-6501.   DOI
73 Zhu, L., Shen, D., Zhou, Q., Li, Z., Fang, X. and Li, Q. Z. 2015. A locked nucleic acid (LNA)-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture. PLoS One 10, e0120464.   DOI
74 Adkar-Purushothama, C. R., Nagaraja, H., Sreenivasa, M. Y. and Sano, T. 2013. First Report of Coleus blumei viroid Infecting Coleus in India. Plant Dis. 97, 149.
75 Ahn, Y. C., Cho, M. H., Yoon, I. K., Jung, D. H., Lee, E. Y., Kim, J. H. and Jang, W. C. 2010. Detection of Salmonella Using the Loop Mediated Isothermal Amplification and Real-time PCR. J. Kor. Chem. Soc. 54, 215-221.   DOI
76 Boonham, N., Perez, L. G., Mendez, M. S., Peralta, E. L., Blockley, A., Walsh, K., Barker, I. and Mumford, R. A. 2004. Development of a real-time RT-PCR assay for the detection of potato spindle tuber viroid. J. Virol. Methods 116, 139-146.   DOI
77 Boubourakas, I. N., Fukuta, S. and Kyriakopoulou, P. E. 2009. Sensitive and rapid detection of peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 160, 63-68.   DOI
78 Budziszewska, M., Wieczorek, P. and Obrepalska-Steplowska, A. 2016. One-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) for detection of tomato torrado virus. Arch. Virol. 161, 1359-1364.   DOI
79 Bustin, S. A. and Mueller, R. 2005. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci. (Lond). 109, 365-379.   DOI
80 Choi, J. J., Cho, M., Oh, M., Kim, H., Kil, M. S. and Park, H. 2010. PNA-mediated Real-Time PCR Clamping for Detection of EGFR Mutations. Bull. Kor. Chem. Soc. 31, 3525-3529.   DOI
81 Collmer, C. W., Hadidi, A. and Kaper, J. M. 1985. Nucleotide sequence of the satellite of peanut stunt virus reveals structural homologies with viroids and certain nuclear and mitochondrial introns. Proc. Natl. Acad. Sci. USA 82, 3110-3114.   DOI
82 De La Torre A, R., Téliz Ortiz, D., Pallás, V. and Sánchez Navarro, J. A. 2009. First report of avocado sunblotch viroid in avocado from Michoacán, México. Plant Dis. 93, 202.