Browse > Article
http://dx.doi.org/10.5187/JAST.2006.48.3.345

Lipogenesis Gene Expression Profiling in Longissimus dorsi on the Early and Late Fattening stage of Hanwoo  

이승환 (National Livestock Research Institute, Suwon, R.D.A)
박응우 (National Livestock Research Institute, Suwon, R.D.A)
조용민 (National Livestock Research Institute, Suwon, R.D.A)
김경훈 (National Livestock Research Institute, Suwon, R.D.A)
오영균 (National Livestock Research Institute, Suwon, R.D.A)
이지혜 (National Livestock Research Institute, Suwon, R.D.A)
이창수 (Department of Applied Biochemistry, Konkuk University)
오성종 (National Livestock Research Institute, Suwon, R.D.A)
윤두학 (National Livestock Research Institute, Suwon, R.D.A)
Publication Information
Journal of Animal Science and Technology / v.48, no.3, 2006 , pp. 345-352 More about this Journal
Abstract
Korean native cattle (Hanwoo) have a good capacity to produce heavily marbled meat of high value. The intramuscular fat in Hanwoo is known to be deposit from 12 months of age by degree of slightly visible and significantly developed in 28 months of age. Lipogenesis gene expression profiling in longissimus dorsi at early and late fattening stage will be helpful to understand the mechanism of intramuscular fat deposition in skeletal muscle. Therefore, we analysed the gene expression patterns of six genes related lipid metabolism (FABP4, GLUT4, LPL, ACC, ACL and SCD) between early and late fattening stage. The mRNA expression of FABP4 at late fattening stage (27 months old) was higher about 3.0 fold than at early fattening stage (12 months old) in each three individuals of Hanwoo. However, GLUT4 mRNA expression was not different at late fattening stage compared with at early fattening stage. On the other hand, The expression patterns of LPL, ACC, ACL and SCD genes related lipid metabolism were significantly over-expressed about 3.5 fold, 2.7 fold, 3.7 fold and 7.5 fold at late fattening stage, respectively. Thus, these results suggested that lipogenesis in skeletal muscle at late fattening stage is due to increasing uptake of fatty acid by FABP4 and lipogenesis gene expression such as LPL, ACC, ACL and SCD.
Keywords
Longissimus dorsi; Early and late fattening stage; Lipid metabolism; Gene expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Coyle, E. F., Jeukendrup, A. E., Oseto, M. C., Hodgkinson, B. J. and Zderic, T. W. 2001. Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise. Am. J. Physiol. Endocrinol. Metab. 280: E391-E398
2 Eckel, R. H. 1989. Lipoprotein lipase. A Multifunctional Enzyme Relevant to Common Metabolic Diseases. New Eng. J. Med. 320:1060-1068   DOI   ScienceOn
3 Evans, JL and Witters, LA. 1988. Quantitation by irnmunoblotting of the in vivo induction and subcellular distribution of hepatic acetyl-CoA carboxylase. Arch. Biochem. Biophys. 264: 103-113   DOI   ScienceOn
4 Garland, P. B., Newsholme, E. A. and Randle, P. J. 1964. Regulation of glucose uptake by muscle: effect of fatty acid and ketone bodies, and of alloxan-diabetes and stavation, on pyruvate metabolism and on lactate/pyruvate and L-glycerol 3-phosphate/ dihydroxyacetone phosphate concentration ratios in rat heart and rat diaphragm muscle. Biochem. J. 93:665-678   DOI
5 Cheema, S. K. and Ciandinin, M. T. 1996. Fat alters expression of genes for enzymes of lipogenesis in lean and obese mice. Biochim. Biophys. Acta. 1299:284-288   DOI   ScienceOn
6 Randle, P. J., Hales, C. N., Garland, P. B. and Newsholme, E. A. 1963. The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785-789
7 Kaestner, K H., Ntambi, J. M., Kelly, T. J. and Lane, M. D. 1989. Differentiation-induced gene expression In 3T3-Ll preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J. BioI. Chem. 264:14755-14761
8 Kiens, B. 1998. Utilization of skeletal muscle triacylglycerol during postexercise recovery in human. Am. J. Physiol. 275:E332-E337
9 Kraegen, E. W. and Cooney, G. J. 1999. The role of free fatty acids in muscle insulin resistance. Diabetes Ann. 12:141-159
10 Gerbens, F., Jansen, A., Anton, J. M., Harders, F., Meuwissen, T. H. E., Rettenberger, G., Veerkamp, J. H. and te Pas, M. F. W. 1998. The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. J. Anim. Sci. 9:1022-1026.
11 Hegarty, B. D., Furler, S. M., Ye, J., Cooney, G. J. and Kraegen, E. W. 2003. The role of intramuscular lipid in insulin resistance. Acta. Physiol. Scand, 178:373-383   DOI   ScienceOn
12 Jeukendrup, A. E. 2002. Regulation of fat metabolism in skeletal muscle. Ann. N Y Acad. Sci. 967:217-235   DOI
13 JMGA. 1988. New beef carcass grading. standards Japan Meat Grading Association, Tokyo, Japan
14 Lee, S. H., Yoon, D. H., Choi, N. J., Hwang, S. H., Cheong, E. Y., Oh, S. J., Cheong, L. C and Lee, C. S. 2005. Developmental Relationship of Unsaturated fatty acid composition and stearoylcoA desaturase mRNA level in Hanwoo steers muscle. Asian-Aust. J. Anim. Sci. 18:562-566   DOI
15 Murray, R. K., Granner, D. K., Mayes, P. A and Rodwell, V. W. 2000. Biosynthesis of fatty acids. In Harper's Biochemistry 25ed. Prentice-Hall, NJ 230-237
16 Randle, P. J., Newsholme, E. A. and Garland, P. B. 1964. Regulation of glucose uptake by muscle: 8. effects of fatty acids, ketone bodies and pyruvate and of alloxandiabete and starvation on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem. J. 93:652-665   DOI
17 Smith, S. B., Prior, R. L., Ferrell, C. L. and Mersmann, H. J. 1984. Interrelationships among diet, age, fat deposition and lipid metabolism In growing steers. J. Nutr. 114: 153-162   DOI
18 Yoshimura, T. and Namikawa, K. 1983. Influence of breed, sex and anatomical location on lipid and fatty acid composition of bovine subcutaneous fat. Jpn. J. Zootech. Sci. 54:97-100
19 USDA. 1989. Official united states standards for grades of beef carcases. Agric. Marketing Serv. USDA, Washington, DC
20 Wang, Y. H., Byme, K A., Reverter, A., Harper, G. S., Taniguchi, M., McWilliarn, S. M., Mannen, H., Oyama, K and Lehnert, S. A. 2005. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Marnm. Genome 16: 201-210   DOI
21 Beigneux, A. P., Kosinski, C., Gavino, B., Horton, J. D., Skarnes, W. C. and Young, S. G. 2004. ATP-citrate lyase deficiency in the mouse. J. BioI. Chem. 279:9557-9564   DOI   ScienceOn
22 Stannard, S. R. and Johnson, N. A. 2003. Insulin resistance and elevated triglyceride in muscle: more important for survival than thrifty genes ? J. Physiol. 554:595-607   DOI   ScienceOn
23 SuI. H. S. and Dong, W. 1998. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18:331-351   DOI   ScienceOn
24 Taniguchi, M., Utsugi, T., Oyama, K., Mannen, H., Kobayashi, M., Tanabe, Y., Ogino, A. and Tsuji, S. 2004. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in japanese black cattle. Marnm. Genome 14:142-148
25 Childs, K. D., Goad, D. W., Allan, M. F., Pomp, D., Krehbiel, C., Geisert, R. D., Morgan, JB., and Malayer, JR. 2002. Differential expression of NATl translational repressor during development of bovine intramuscular adipocytes. Physiol. Genomics. 10:49-56   DOI
26 Zorzano, A., Palacin, M. and Guma, A. 2005. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta. Physiol. Scand. 183:43-58   DOI   ScienceOn
27 김경훈, 이주환, 오영균, 강수원, 이상철, 박웅렬, 고영두. 2005. 거세한우에 있어서 배합사료의 적정 TDN 수준과 도축 월령. 한국동물자원학회지. 47(5) 731-744
28 이한주, 이승환, 조용민, 윤호백, 전봉균, 오성종, 권무식, 윤두학. 2004. 한우 Lipoprotein lipase 유전자 intron 5번의 polymorphism과 경제 형질과의 관련성 분석. 한국동물자원과학회지. 46(6) 947-956
29 Smith, S. and Prior, R. 1981. Evidence for a functional ATP-citrate lyase.NADP-malate dehydrogenase pathway in bovine adipose tissue: enzyme and metabolite levels. Arch Biochem. Biophys. 211: 192-201   DOI   ScienceOn