• Title/Summary/Keyword: SWIMMING

Search Result 934, Processing Time 0.026 seconds

Antidepressant Effects of JG02 on Chronic Restraint Stress Animal Model (만성구속스트레스 동물모델에 대한 JG02의 항우울 효과)

  • You, Dong Keun;Seo, Young Kyung;Lee, Ji-Yoon;Kim, Ju Yeon;Jung, Jin-Hyeong;Choi, Jeong June;Jung, In Chul
    • Journal of Oriental Neuropsychiatry
    • /
    • v.30 no.3
    • /
    • pp.209-220
    • /
    • 2019
  • Objectives: As a general emotion, everyone can temporarily experience depression, but depressive disorder is a disease that excessively affects daily life. Among the various causes of depression, the deficiency of monoamine-based neurotransmitters such as serotonin and epinephrine are considered significant. Thus, antidepressants that target monoamines are used frequently. However, side effects such as nausea, vomiting, insomnia, anxiety, and sexual dysfunction are observed. Thus, it is necessary to develop a new therapeutic agent with fewer side effects. In this study, we investigated the antidepressant effect of JG02, used to treat depression by normalizing the flow of qi (氣) in Korean medicine. Methods: C57BL/6 mice were selected and randomly divided into six groups: normal, control, amitriptyline, and JG02 (50, 125, 250 mg/kg), respectively. Except for normal, depression was induced by applying restraint stress at the same time for six hours daily for 14 consecutive days. Saline, amitriptyline or JG02 samples were orally administered two hours before applying the stress. After that, a forced swimming test and an open field test were performed. Additionally, serum corticosterone, serotonin mRNA, BDNF mRNA, and protein in the hippocampal region were measured and compared. Results: JG02 decreased immobility time rate in the FST and increased the zone transition number and travel distance in the OFT. Also, JG02 inhibited the release of serum corticosterone, and increased serotonin, BDNF gene expression, and BDNF protein in the hippocampus. Conclusions: In this study, JG02 showed significant antidepressant effects on the chronic restraint stress mice model. When further research is performed based on JG02, the development of a new antidepressant is considered highly possible.

Gossypii Semen oil alleviates memory dysfunction in scopolamine-treated mice (면화자 정유의 기억력 손상 완화 효과)

  • Lee, Jihye;Jung, Eun Mi;Lee, Eunhong;Jang, Gwi Yeong;Seo, Kyung Hye;Kim, Mi Ryeo;Jung, Ji Wook
    • The Korea Journal of Herbology
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Objectives : Gossypium arboreum (cotton) is traditionally used to treat various health disorders. However, anti-amnesic effect of G. arboreum has not been reported. The objective of this study was to investigate in-vivo the anti-amnesic effects along with in vitro antioxidant and acetylcholinesterase (AChE) inhibition potential in G. arboreum seed essential oil. Methods : The essential oil of G. arboreum obtained by solid phase microextraction (SPME) techniques were identified by gas chromatography-mass spectroscopy (GC-MS). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay were performed to determine the antioxidant activity at various concentrations (312.5, 625, 1250, 2500, 5000, 10000 ㎍/㎖. Y-maze, passive avoidance and Morris water maze tests were carried out to evaluate improved effect on scopolamine (1 mg/kg)-induced memory dysfunction at the dose level of 50, 100 and 200 mg/kg. Donepezil (5 mg/kg) was used as a positive drug control. We performed acetylcholinesterase (AChE) activity assay in ex vivo. Results : Five volatile compounds were identified in G. arboreum. The assays of DPPH and ABTS revealed that G. arboreum increased antioxidant activity in a dose-dependent manner. G. arboreum ameliorated the percent of spontaneous alternation in the Y-maze test, shortened step-through latency in the passive avoidance test, and increased swimming time in the target zone in the Morris water maze test. In addition, G. arboreum inhibited the AChE activity. Conclusions : Based on these findings, G. arboreum may aid in the prevention and treatment of learning and memory-deficit disorders through antioxidant and AChE inhibitory activities.

Regulation of Histone Acetylation and Methylation of the p11 Gene in the Hippocampus of Chronic Unpredictable Stress-induced Depressive Mice (장기간 예측 불가능한 스트레스를 받은 마우스 해마에서 p11 유전자의 히스톤 아세틸화 및 메틸화의 조절)

  • Seo, Mi Kyoung;Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.995-1003
    • /
    • 2021
  • Chromatin remodeling regulates gene expression through epigenetic mechanisms. Aberrations in histone modification have been associated with depression-like behaviors in animal models. Additionally, growing evidence also indicates that epigenetic modification is associated with depression. p11 (S100A10) has been implicated in the pathophysiology of depression both in human and rodent models. In the present study, we investigated alterations in histone acetylation and methylation at the promoter of the p11 gene in the hippocampus of mice subjected to chronic unpredictable stress (CUS). C57BL/6 mice were exposed to CUS daily for 3 weeks. Depression-like behaviors were measured with the forced swimming test (FST). The levels of hippocampal p11 expression were analyzed by quantitative real-time polymerase chain reaction (PCR) and Western blotting. The levels of acetylated and methylated histone H3 at the promoter of p11 were measured by chromatin immunoprecipitation followed by real-time PCR. CUS-exposed mice displayed depression-like behaviors with prolonged immobility in FST. CUS led to significant decreases in the expression of p11 at both protein and mRNA levels. Meanwhile, there was a decrease in histone H3 acetylation (Ac-H3) and H3-K4 trimethylation (H3K4met3) and an increase in H3-K27 trimethylation (H3K27met3) at the p11 promoter. These results indicate that chronic stress causes the epigenetic suppression of p11 expression in the hippocampus.

Perilla Frutescens Extract Protects against Scopolamine-Induced Memory Deficits in Mice (스코폴라민으로 유도한 기억력 손상 모델에서 소엽 추출물의 보호 효과)

  • Lee, Jihye;Lee, Eunhong;Jung, Eun Mi;Kim, Dong Hyun;Kim, Sung-kyu;Park, Mi Hee;Jung, Ji Wook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.97-103
    • /
    • 2021
  • Perilla frutescens (P. frutescens) is an important herb used for many purposes such as medicinal, aromatic, and functional food in Asian countries and has beneficial effects such as antioxidant activity, anti-inflammation activity, anti-depression activity, and anxiolytic activity. However, there have been no studies on the protective effect of P. frutescens extract (PFE) on amnesia in vivo. The present study aimed to investigate whether PFE protects memory deficit using a scopolamine-induced mice model and elucidate the underlying mechanisms involved. The protective effect of PFE against scopolamine-induced memory deficits was investigated using Y-maze, passive avoidance, and Morris water maze tests. Furthermore, the potential mechanisms of PFE in improving memory capabilities related to the cholinergic system and antioxidant activity were examined. PFE significantly increased spontaneous alternation in the Y-maze test, step-through latency in the passive avoidance test, and swimming time in the target quadrant in the probe test when compared to the scopolamine-treated group. Likewise, PFE significantly decreased escapes latency in the Morris water maze test. PFE could not regulate cholinergic function in acetylcholine level and acetylcholine esterase activity. However, PFE increased DPPH radical scavenging activity dose-dependently and total polyphenol content was 127.7±1.2 ㎍ GAE/mg. The results showed that the PFE could be a preventive and/or therapeutic candidate for memory and cognitive dysfunction in Alzheimer's disease.

Effects of β-Asarone on Pro-Inflammatory Cytokines and Learning and Memory Impairment in Lipopolysaccharide-Treated Mice (β-Asarone이 Lipopolysaccharide에 의한 생쥐 해마의 염증성 사이토카인 발현과 학습 및 기억 장애에 미치는 영향)

  • Choi, Moon-Sook;Kwak, Hee-Jun;Kweon, Ki-Jung;Hwang, Ji-Mo;Shin, Jung-Won;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.119-127
    • /
    • 2013
  • Objectives : ${\beta}$-Asarone (BAS) is an active ingredient in Acori Rhizoma. This study investigated anti-neuroinflammatory and memory ameliorating effects of BAS in systemic lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : BAS was administered orally at doses of 7.5, 15, and 30 mg/kg for 3 days prior to LPS (3 mg/kg, intraperitoneal) injection. Pro-inflammatory cytokine mRNA, including tumor necrosis factor-${\alpha}$ (TNF-ㅍ), interleukin (IL)-$1{\beta}$ and IL-6, was measured in hippocampus tissue using real-time polymerase chain reaction at 4 h after the LPS injection. An ameliorating effect of 30 mg/kg BAS on learning and memory impairment in the LPS-treated mice was verified using the Morris water maze test. Results : BAS significantly attenuated up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 mRNA in hippocampus tissue of the LPS-treated mice. In acquisition training test, BAS improved learning performance of the LPS-treated mice with a significant decrease of escape latency to the platform. In memory retention test, BAS also ameliorated memory impairment of the LPS-treated mice with a significant increase of swimming time in zones neighboring to the platform, number of target heading, and memory score. Conclusion : The results suggest that inhibition of pro-inflammatory cytokines and neuroinflammation in the hippocampus by BAS could be one of the mechanisms for BAS-mediated ameliorating effect on learning and memory impairment in LPS-treated mice.

Occurrence and diet analysis of sea turtles in Korean shore

  • Kim, Jihee;Kim, Il-Hun;Kim, Min-Seop;Lee, Hae Rim;Kim, Young Jun;Park, Sangkyu;Yang, Dongwoo
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.203-217
    • /
    • 2021
  • Background: Sea turtles, which are globally endangered species, have been stranded and found as bycatch on the Korean shore recently. More studies on sea turtles in Korea are necessary to aid their conservation. To investigate the spatio-temporal occurrence patterns of sea turtles on the Korean shore, we recorded sampling locations and dates, identified species and sexes and measured sizes (maximum curved carapace length; CCL) of collected sea turtles from the year 2014 to 2020. For an analysis of diets through stomach contents, we identified the morphology of the remaining food and extracted DNA, followed by amplification, cloning, and sequencing. Results: A total of 62 stranded or bycaught sea turtle samples were collected from the Korean shores during the study period. There were 36 loggerhead turtles, which were the dominant species, followed by 19 green turtles, three hawksbill turtles, two olive ridley turtles, and two leatherback turtles. The highest numbers were collected in the year 2017 and during summer among the seasons. In terms of locations, most sea turtles were collected from the East Sea, especially from Pohang. Comparing the sizes of collected sea turtles according to species, the average CCL of loggerhead turtles was 79.8 cm, of green turtles was 73.5 cm, and of the relatively large leatherback turtle species was 126.2 cm. In most species, the proportion of females was higher than that of males and juveniles, and was more than 70% across all the species. Food remains were morphologically identified from 19 stomachs, mainly at class level. Seaweeds were abundant in stomachs of green turtles, and Bivalvia was the most detected food item in loggerhead turtles. Based on DNA analysis, food items from a total of 26 stomachs were identified to the species or genus level. The gulfweed, Sargassum thunbergii, and the kelp species, Saccharina japonica, were frequently detected from the stomachs of green turtles and the jellyfish, Cyanea nozakii, the swimming crab, Portunus trituberculatus, and kelps had high frequencies of occurrences in loggerhead turtles. Conclusions: Our findings support those of previous studies suggesting that sea turtles are steadily appearing in the Korean sea. In addition, we verified that fish and seaweed, which inhabit the Korean sea, are frequently detected in the stomach of sea turtles. Accordingly, there is a possibility that sea turtles use the Korean sea as feeding grounds and habitats. These results can serve as basic data for the conservation of globally endangered sea turtles.

A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ

  • Chen, Lin;Li, Ruimei;Chen, Feiyan;Zhang, Hantao;Zhu, Zhu;Xu, Shuyi;Cheng, Yao;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.666-674
    • /
    • 2022
  • Background: Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods: Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results: TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion: These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREBeBDNF signaling pathway.

Effects of Aerobic Exercise upon Cytosolic GAPHD and Mitochondrial MnSOD Activity of Pancreatic Cells in the Type 1 Diabetic Rats (유산소운동이 제1형 당뇨쥐의 췌장 세포질 GAPHD 및 미토콘드리아 MnSOD 활성에 미치는 영향)

  • Lee, Sang-Hak;Yoon, Jin-Hwan
    • 한국체육학회지인문사회과학편
    • /
    • v.51 no.3
    • /
    • pp.437-445
    • /
    • 2012
  • Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and manganese superoxide dismutase (MnSOD) has been hypothesized as a mediator in the activation of multiple pathways implicated in the pathogenesis of diabetic disease. The objective of this study was to understand the mechanism that aerobic exercise activate GAPDH and MnSOD in pancreatic cells. To achieve the purpose of this study, thirty male Sprague-Dawley rats were assigned to control group, diabetic group and diabetic exercise group. 10 rats were forced to exercise according to exercise protocol for 8weeks and 20 rats were untrained for control and diabetic group. Pancreatic tissue were extracted from the each. Expressions of GAPDH and MnSOD in diabetic pancreatic tissues were significantly decreased compare to control group. However, swimming (trained diabetic group) significantly increased expressions of GAPDH and MnSOD compare to diabetic group, respectively. In hyperglycemia, GAPDH and MnSOD in pancreatic cells is activated by aerobic exercise, and this inactivates multiple pathways implicated in the pathogenesis of diabetic disease. In conclusion, these findings suggest that increased activity of GAPDH and MnSOD by exercise have beneficial effects on mitochondrial dysfunction and arresting the progression of diabetic disease.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

The effects of PPARβ/δ overexpression on PGC-1α mRNA and protein stability after accute endurance exercise in mice skeletal muscle (생쥐의 골격근에 PPARβ/δ 과발현이 1회 지구성 운동 후 안정시 PGC-1α mRNA와 단백질 안정성에 미치는 영향)

  • Koh, Jin-Ho;Jung, Su Ryun;Kim, Ki-Jin
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.4
    • /
    • pp.507-516
    • /
    • 2016
  • The purpose of this study is to identify the effects of PPARβ/δ over-expression on PGC-1α mRNA and protein stability after single bout of swimming exercise in mice skeletal muscle. Empty vector (EV) or PPARβ/δ was over-expressed in tibialis anterior(TA) using electroporation(EPO) technique to compare with non-treatment muscle(control; Con). TA muscles were dissected at 0h, 24h or 54h after termination of exercise. PGC-1α mRNA in Con, EV and PPARβ/δ over-expressed muscles were increased 6.8 fold (p<.001), 6.2 fold(p<.001) and 7.1 fold(p<.001), respectively, than sedentary(Sed) group at 0h after exercise and then reverted to Sed group levels at 24h and 54h after termination of exercise. PGC-1α and PGC-1α ubiquitination in EV treated muscles were increased 2.2 fold and 1.74 fold, respectively, than Sed group at 24h after termination of exercise, and then reverted to Sed group levels at 54h after termination of exercise. PGC-1α in PPARβ/δ over-expressed muscles at 24h and 54h after termination of exercise were increased 2.5 fold and 2.2 fold, respectively, than Sed group, but PGC-1α ubiquitination was not increased at 24h and 54h after termination of exercise. Our results indicate that PPARβ/δ over-expression does not increase PGC-1α mRNA stability, but increase PGC-1α protein stability through post-translation mechanism after termination of exercise.