Browse > Article
http://dx.doi.org/10.15188/kjopp.2021.06.35.3.97

Perilla Frutescens Extract Protects against Scopolamine-Induced Memory Deficits in Mice  

Lee, Jihye (Division of Bio-technology and Convergence, College of Herbal Bio-Industry, Daegu Haany University)
Lee, Eunhong (Division of Bio-technology and Convergence, College of Herbal Bio-Industry, Daegu Haany University)
Jung, Eun Mi (Division of Bio-technology and Convergence, College of Herbal Bio-Industry, Daegu Haany University)
Kim, Dong Hyun (Department of Pharmacology, School of Medicine, Konkuk University)
Kim, Sung-kyu (SFC bio)
Park, Mi Hee (SFC bio)
Jung, Ji Wook (Division of Bio-technology and Convergence, College of Herbal Bio-Industry, Daegu Haany University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.35, no.3, 2021 , pp. 97-103 More about this Journal
Abstract
Perilla frutescens (P. frutescens) is an important herb used for many purposes such as medicinal, aromatic, and functional food in Asian countries and has beneficial effects such as antioxidant activity, anti-inflammation activity, anti-depression activity, and anxiolytic activity. However, there have been no studies on the protective effect of P. frutescens extract (PFE) on amnesia in vivo. The present study aimed to investigate whether PFE protects memory deficit using a scopolamine-induced mice model and elucidate the underlying mechanisms involved. The protective effect of PFE against scopolamine-induced memory deficits was investigated using Y-maze, passive avoidance, and Morris water maze tests. Furthermore, the potential mechanisms of PFE in improving memory capabilities related to the cholinergic system and antioxidant activity were examined. PFE significantly increased spontaneous alternation in the Y-maze test, step-through latency in the passive avoidance test, and swimming time in the target quadrant in the probe test when compared to the scopolamine-treated group. Likewise, PFE significantly decreased escapes latency in the Morris water maze test. PFE could not regulate cholinergic function in acetylcholine level and acetylcholine esterase activity. However, PFE increased DPPH radical scavenging activity dose-dependently and total polyphenol content was 127.7±1.2 ㎍ GAE/mg. The results showed that the PFE could be a preventive and/or therapeutic candidate for memory and cognitive dysfunction in Alzheimer's disease.
Keywords
Cognitive; Dementia; Memory; Perilla frutescens; Scopolamine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maliszewska-Cyna E, Lynch M, Oore JJ, Nagy PM, Aubert I. The Benefits of Exercise and Metabolic Interventions for the Prevention and Early Treatment of Alzheimer's Disease. Curr Alzheimer Res. 2017;14(1):47-60.   DOI
2 Konar A, Gupta R, Shukla RK, Maloney B, Khanna VK, Wadhwa R, Lahiri DK, Thakur MK. M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Sci Rep. 2019;9(1):13990.   DOI
3 Hussain I, Hawkins J, Harrison D, Hille C, Wayne G, Cutler L, Buck T, Walter D, Demont E, Howes C, Naylor A, Jeffrey P, Gonzalez MI, Dingwall C, Michel A, Redshaw S, Davis JB. Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid precursor protein and amyloid-beta production in vivo. J Neurochem. 2007;100(3):802-9.   DOI
4 Wang Z, Tu Z, Xie X, Cui H, Kong KW, Zhang L. Perilla frutescens Leaf Extract and Fractions: Polyphenol Composition, Antioxidant, Enzymes (alpha-Glucosidase, Acetylcholinesterase, and Tyrosinase) Inhibitory, Anticancer, and Antidiabetic Activities. Foods. 2021;10(2).
5 Kim JM, Lee U, Kang JY, Park SK, Shin EJ, Kim HJ, et al. Anti-Amnesic Effect of Walnut via the Regulation of BBB Function and Neuro-Inflammation in Abeta1-42-Induced Mice. Antioxidants (Basel). 2020;9(10).
6 Chen JH, Xia ZH, Tan RX. High-performance liquid chromatographic analysis of bioactive triterpenes in Perilla frutescens. J Pharm Biomed Anal. 2003;32:1175-9.   DOI
7 Okamoto M, Mitsunobu F, Ashida K, Mifune T, Hosaki Y, Tsugeno H, Harada S, Tanizaki Y, Kataoka M, Niiya K, Harada M. Effects of perilla seed oil supplementation on leukotriene generation by leucocytes in patients with asthma associated with lipometabolism. Int Arch Allergy Immunol. 2000;122:137-42.   DOI
8 Gulcin I. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651-715.   DOI
9 Lee AY, Hwang BR, Lee MH, Lee S, Cho EJ. Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function. Nutr Res Pract. 2016;10(3):274-81.   DOI
10 Yamagami H, Fuji T, Wako M, Hasegawa Y. Sulfated Polysaccharide Isolated from the Nacre of Pearl Oyster Improves Scopolamine-Induced Memory Impairment. Antioxidants (Basel). 2021;10(4).
11 Zhu JX, Hu WQ, Dong SQ, Yi LT, Zeng JX, Li M. Hippocampal BDNF signaling is required for the antidepressant effects of perillaldehyde. Pharmacol Rep. 2019;71(3):430-7.   DOI
12 Tagai K, Nagata T, Shinagawa S, Shigeta M. Anosognosia in patients with Alzheimer's disease: current perspectives. Psychogeriatrics. 2020;20(3):345-52.   DOI
13 Lorigooini Z, Boroujeni SN, Sayyadi-Shahraki M, Rahimi-Madiseh M, Bijad E, Amini-Khoei H. Limonene through Attenuation of Neuroinflammation and Nitrite Level Exerts Antidepressant-Like Effect on Mouse Model of Maternal Separation Stress. Behav Neurol. 2021;2021:8817309.
14 Song Y, Seo S, Lamichhane S, Seo J, Hong JT, Cha HJ, et al. Limonene has anti-anxiety activity via adenosine A2A receptor-mediated regulation of dopaminergic and GABAergic neuronal function in the striatum. Phytomedicine. 2021;83:153474.   DOI
15 Nguyen VTT, Sallbach J, Dos Santos Guilherme M, Endres K. Influence of Acetylcholine Esterase Inhibitors and Memantine, Clinically Approved for Alzheimer's Dementia Treatment, on Intestinal Properties of the Mouse. Int J Mol Sci. 2021;22(3):1015.   DOI
16 Kuang H, Zhou ZF, Zhu YG, Wan ZK, Yang MW, Hong FF, Yang SL. Pharmacological Treatment of Vascular Dementia: A Molecular Mechanism Perspective. Aging Dis. 2021;12(1):308-26.   DOI
17 Lee DH. Analysis of Clinical Korean Medicine Studies on Dementia : Focused on Korean Literatures for 10 Years. Journal of Society of Preventive Korean Medicine. 2020;24(1):37-48.
18 MEDICLASSICS [homepage on the Internet]. Korea Institute of Oriental Medicine; 2015 [cited 23 Apr 2021]. Available from: https://mediclassics.kr/books/154/volume/9#content_96
19 Wang X, Zhang D, Song W, Cai CF, Zhou Z, Fu Q, et al. Neuroprotective effects of the aerial parts of Polygala tenuifolia Willd extract on scopolamine-induced learning and memory impairments in mice. Biomed Rep. 2020;13(5):37.   DOI
20 Shin EJ, Lee SH, Sharma N, Nguyen BT, Chung YH, Kang SW, et al. An adenoviral vector encoded with the GPx-1 gene attenuates memory impairments induced by beta-amyloid (1-42) in GPx-1 KO mice via activation of M1 mAChR-mediated signalling. Free Radic Res. 2020;1-15.
21 Ju S, Seo JY, Lee SK, Oh J, Kim JS. Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism. J Ginseng Res. 2021;45(1):108-18.   DOI
22 Umukoro S, Okoh L, Igweze SC, Ajayi AM, Ben-Azu B. Protective effect of Cyperus esculentus (tiger nut) extract against scopolamine-induced memory loss and oxidative stress in mouse brain. Drug Metab Pers Ther. 2020;35(3).
23 Kim JO, Lee GD, Im AG, Lee JT, Choe HJ, Kim DI. Antioxidant effects and physiological activity of Perilla frutescens extracts.. Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference. 2007;2007(11):233.1-.1.
24 Asif M. Phytochemical study of polyphenols in Perilla Frutescens as an antioxidant. Avicenna J Phytomed. 2012;2(4):169-78.
25 Ryu NS. Antioxidant Activity and Active Components of Wild Vegetables from Korea. Chonbuk National University. 2018.
26 Darvesh S, Walsh R, Kumar R, Caines A, Roberts S, Magee D, Rockwood K, Martin E. Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis Assoc Disord. 2003;17(2):117-26.   DOI
27 Wang X, Zhang D, Song W, Cai CF, Zhou Z, Fu Q, Yan X, Cao Y, Fang M. Neuroprotective effects of the aerial parts of Polygala tenuifolia Willd extract on scopolamine-induced learning and memory impairments in mice. Biomed Rep. 2020;13(5):37.   DOI
28 Ghai R, Nagarajan K, Arora M, Grover P, Ali N, Kapoor G. Current Strategies and Novel Drug Approaches for Alzheimer Disease. CNS Neurol Disord Drug Targets. 2020;19(9):676-90.   DOI
29 Levin RA, Carnegie MH, Celermajer DS. Pulse Pressure: An Emerging Therapeutic Target for Dementia. Front Neurosci. 2020;14:669.   DOI
30 Ju S, Seo JY, Lee SK, Oh J, Kim JS. Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism. J Ginseng Res. 2021;45(1):108-18.   DOI
31 Asif M. Phytochemical study of polyphenols in Perilla Frutescens as an antioxidant. Avicenna J Phytomed. 2012;2(4):169-78.
32 He MT, Lee AY, Kim JH, Park CH, Shin YS, Cho EJ. Protective role of Cordyceps militaris in Abeta(1-42)-induced Alzheimer's disease in vivo. Food Sci Biotechnol. 2018;28(3):865-72.   DOI
33 Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology. 1961;7(2):88-95.   DOI
34 Lee MS, Chung MS. Analysis of Volatile Compounds in Perilla frutescens var. acuta by Solid Phase Microextraction. Journal of the Korean Society of Food Culture. 2003;18(1):69-74.
35 Makino T, Furuta A, Fujii H, Nakagawa T, Wakushima H, Saito K, Kano Y. Effect of oral treatment of Perilla frutescens and its constituents on type-I allergy in mice. Biol Pharm Bull. 2001;24:1206-9.   DOI
36 Xu L, Li Y, Fu Q, Ma S. Perillaldehyde attenuates cerebral ischemia-reperfusion injury-triggered overexpression of inflammatory cytokines via modulating Akt/JNK pathway in the rat brain cortex. Biochem Biophys Res Commun. 2014;454(1):65-70.   DOI
37 Sohn E, Kim YJ, Kim JH, Jeong SJ. Ficus erecta Thunb Leaves Alleviate Memory Loss Induced by Scopolamine in Mice via Regulation of Oxidative Stress and Cholinergic System. Mol Neurobiol. 2021.
38 Ban JY, Park HK, Kim SK. Effect of Glycyrrhizic Acid on Scopolamine-Induced Cognitive Impairment in Mice. Int Neurourol J. 2020;24:S48-55.   DOI
39 Reddy NV, Li H, Hou T, Bethu MS, Ren Z, Zhang Z. Phytosynthesis of Silver Nanoparticles Using Perilla frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int J Nanomedicine. 2021;16:15-29.   DOI
40 Ademosun AO, Adebayo AA, Popoola TV, Oboh, G. Shaddock (Citrus maxima) peels extract restores cognitive function, cholinergic and purinergic enzyme systems in scopolamine-induced amnesic rats. Drug Chem Toxicol. 2020;1-8.