• Title/Summary/Keyword: SWCNTs

Search Result 148, Processing Time 0.029 seconds

Biocompatible Individual Dispersion of Single-walled Carbon Nanotubes

  • Najeeb, C.K.;Kim, Duck-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.529-529
    • /
    • 2012
  • Dispersion of carbon nanotubes in biocompatible media are of particular interest for diverse biomedical and nanomedicine applications. Various biomolecules and biopolymers such as DNA, proteins, poly L-lysine, starch, gelatin, steroid biosurfactants, and chitosan have shown capability for the effective dispersion of carbon nanotubes in water. Chitosan has demonstrated capacity for effective dispersion of single-walled carbon nanotubes (SWCNTs) in acidic medium and it also showed tendency to preferentially disperse smaller diameter nanotubes. Chemical functionalizations of chitosan enable its solubility in neutral pH water by reducing the intra and inter molecular hydrogen bonding. Herein, we present a neutral pH water soluble chitosan derivative, chitosan-hydroxyphenyl acetamide (CHPA), obtained by functionalizing the amino groups of chitosan with 4-hydroxyphenyl acetic acid, as an efficient biocompatible dispersant for debundling and solubilization of SWNTs in neutral aqueous solutions. Various process conditions for individual dispersion of SWCNTs are analyzed based on optical absorption and Raman spectroscopy.

  • PDF

Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates

  • Kaci, Abdelhakim;Tounsi, Abdelouahed;Bakhti, Karima;Adda Bedia, El Abbas
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.491-504
    • /
    • 2012
  • In this paper, the nonlinear cylindrical bending of simply supported, functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs), is studied. The plates are subjected to uniform pressure loading in thermal environments and their geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are reduced to linear differential equation with nonlinear boundary conditions yielding a simple solution procedure. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.

Passive matrix of p-type SWCNTs and PEI-doped n-type SWCNTs

  • Yun, Jang-Yeol;Park, Jae-Hyeon;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.73-73
    • /
    • 2010
  • 본 연구에서는 성장된 p-형의 단일벽 탄소 나노튜브 (SWCNT)와 폴리머 코팅으로 n-형 특성을 보이는 SWCNT의 접합으로 pn-접합 소자 어레이를 만들고 특성을 분석한 결과에 대해 발표하고자 한다. Y-cut quartz 기판에 0.1 nm 두께의 철 촉매 패턴을 만들고 화학기상증착법으로 잘 정렬된 SWCNT를 성장시킨 후, 열 박리 테이프 (thermal tape)을 이용하여 정렬된 나노선을 실리콘 옥사이드 기판에 전이한다. 전기적(electrical breakdown)으로 금속성의 나노선을 제거하고 p-형의 나노선 배열을 얻을 수 있다. 이 나노선에 국소적으로 폴리머 (polyethyleneimine: PEI) 코팅을 하여 n-형 특성을 갖는 나노선 패턴을 만들 수 있다. 이를 이용하여 만든 소자는 p-형과 n-형이 하나의 나노선 안에 부분적으로 존재하므로 연결부위의 접촉에 관한 문제가 전혀 없으며 소자를 만들기도 유용하다. 이렇게 준비된 p-형 나노선과 n-형 나노선의 접합에서 정류특성을 관찰하였다. 이러한 passive matrix 소자는 터치패드나 유기발광다이오드와 같은 다양한 소자에 응용 가능하다.

  • PDF

Thin CNTs nanoliquid film development over a rough rotating disk

  • Swatilekha Nag;Susanta Maity;Sanjeev K. Metya
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.91-104
    • /
    • 2023
  • Development of thin carbon nanotubes (CNTs) nanoliquid film over the rough surface of a horizontal rotating disk is investigated by considering symmetric roughness either along the azimuthal or radial directions. The disk surface is either heated or cooled axisymmetrically from below. The effects of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) are analyzed on the film thinning process with different types of base liquids. Closed form solutions for velocity and temperature field are obtained for small values of Reynolds number whereas the numerical solution is derived for moderate values of Reynolds number. It is found that fluid retention / depletion takes place when the roughness is symmetric along the azimuthal / radial directions. It is also seen that the film thinning rate enhances for MWCNTs compare to SWCNTs. Further it is found that two different heat transfer regions exits within the flow domain depending on the fact that heat is transferred from disk to liquid film and vice-versa.

Purification of Single-walled Carbon Nanotubes by HCl Treatment and Analysis of the Field Emission Property (염산에 의한 단중벽 탄소나노튜브 정제와 전자방출 특성 평가)

  • Lyu, SeungChul;Jung, Dami;Ahn, KiTae;Lee, Hansung;Lee, Naesung;Park, Yunsun;Sok, Junghyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • High-quality single-walled carbon nanotubes (SWCNTs) were synthesized by catalytic decomposition of $C_2H_2$ using Fe-Mo/MgO catalyst at $800^{\circ}C$. The as-synthesized SWCNTs typically occurred in the form of a bundle with a diameter of 10~20 nm together with amorphous carbon and catalytic impurities, which were removed by a two-step purification process consisting of oxidation and an acid treatment. The oxidation step, using an $O_2$-Ar mixture at $380^{\circ}C$ for 5 hr in a vertical-type furnace and a $HNO_3$ treatment at $100^{\circ}C$ for one hour, was utilized to remove the amorphous carbon particles. Subsequently, metallic catalysts were removed in HCl at room temperature for 5 hr under magnetic stirring. The SWCNT suspension was prepared by dispersing the purified SWCNTs in an aqueous sodium dodecyl benzene sulfonate solution with horn-type sonication. This was then air-sprayed on glass to fabricate CNT field emitters. The samples had a turn-on field value of 4 V/${\mu}m$ and a current density of 0.67 mA/$cm^2$ at 9 V/${\mu}m$. Increasing the HCl treatment time improved the field emission properties.

Effect of the catalyst deposition rates on the growth of carbon nanotubes

  • Ko, Jae-Sung;Choi, In-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.264-264
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) were grown on a Si wafer by using thermal chemical vapor deposition (t-CVD). We investigated the effect of the catalyst deposition rate on the types of CNTs grown on the substrate. In general, smaller islands of catalyst occur by agglomeration of a catalyst layer upon annealing as the catalyst layer becomes thinner, which results in the growth of CNTs with smaller diameters. For the same thickness of catalyst, a slower deposition rate will cause a more uniformly thin catalyst layer, which will be agglomerated during annealing, producing smaller catalyst islands. Thus, we can expect that the smaller-diameter CNTs will grow on the catalyst deposited with a lower rate even for the same thickness of catalyst. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. The catalyst layers were. coated by using thermal evaporation. The deposition rates of the Al and Fe layers varied to be 90, 180 sec/nm and 70, 140 sec/nm, respectively. We prepared the four different combinations of the deposition rates of the AI and Fe layers. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of $H_2$ as a carrier gas and 20 sccm of $C_2H_2$ as a feedstock at 95 torr and $810^{\circ}C$. The substrates were subject to annealing for 20 sec for every case to form small catalyst islands prior to CNT growth. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, UV-Vis NIR spectroscopy, and atomic force microscopy. The fast deposition of both the Al and Fe layers gave rise to the growth of thin multiwalled CNTs with the height of ${\sim}680\;{\mu}m$ for 10 min while the slow deposition caused the growth of ${\sim}800\;{\mu}m$ high SWCNTs. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of $113.3{\sim}281.3\;cm^{-1}$, implying the presence of SWCNTs (or double-walled CNTs) with the tube diameters 2.07~0.83 nm. The Raman spectra of the as-grown SWCNTs showed very low G/D peak intensity ratios, indicating their low defect concentrations.

  • PDF

Programmed APTES and OTS Patterns for the Multi-Channel FET of Single-Walled Carbon Nanotubes (SWCNT 다중채널 FET용 표면 프로그램된 APTES와 OTS 패턴을 이용한 공정에 대한 연구)

  • Kim, Byung-Cheul;Kim, Joo-Yeon;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we have investigated a selective assembly method of single-walled carbon nanotubes (SWCNTs) on a silicon substrate using only photolithographic process and then proposed a fabrication method of field effect transistors (FETs) using SWCNT-based patterns. The aminopropylethoxysilane (APTES) patterns, which are formed for positively charged surface molecular patterns, are utilized to assemble and align millions of SWCNTs and we can more effectively assemble on a silicon (Si) surface using this method than assembly processes using only the 1-octadecyltrichlorosilane (OTS). We investigated a selective assembly method of SWCNTs on a Si surface using surface-programmed APTES and OTS patterns and then a fabrication method of FETs. photoresist(PR) patterns were made using photolithographic process on the silicon dioxide (SiO2) grown Si substrate and the substrate was placed in the OTS solution (1:500 v/v in anhydrous hexane) to cover the bare SiO2 regions. After removing the PR, the substrate was placed in APTES solution to backfill the remaining SiO2 area. This surface-programmed substrate was placed into a SWCNT solution dispersed in dichlorobenzene. SWCNTs were attracted toward the positively charged molecular regions, and aligned along the APTES patterns. On the contrary, SWCNT were not assembled on the OTS patterns. In this process, positively charged surface molecular patterns are utilized to direct the assembly of negatively charged SWCNT on SiO2. As a result, the selectively assembled SWCNT channels can be obtained between two electrodes(source and drain electrodes). Finally, we can successfully fabricate SWCNT-based multi-channel FETs by using our self-assembled monolayer method.

Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms

  • Mananghaya, Michael R.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.34-46
    • /
    • 2012
  • Dopants and defects can be introduced as well as the intercalation of metals into single wall carbon nanotubes (SWCNTs) to modify their electronic and magnetic properties, thus significantly widening their application areas. Through spinpolarized density functional theory (DFT) calculations, we have systemically studied the following: (i) (10,0) and (5,5) SWCNT doped with nitrogen ($CN_xNT$), (ii) (10,0) and (5,5) SWCNT with pyridine-like defects (3NV-$CN_xNT$), and (iii) chemical functionalization of (10,0) and (5,5) 3NV-$CN_xNT$ with 12 different transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt). Attention was done in searching for the most stable configurations, deformation, calculating the formation energies, and exploring the effects of the doping concentration of nitrogen and pyridine-like nitrogenated defects on the electronic properties of the nanotubes. Also, calculating the corresponding binding energies and effects of chemical functionalization of TMs on the electronic and magnetic properties of the nanotubes has been made. We found out that the electronic properties of SWCNT can be effectively modified in various ways, which are strongly dependent not only on the concentration of the adsorbed nitrogen but also to the configuration of the adsorbed nitrogen impurities, the pyridine-like nitrogenated defects, and the TMs absorbed; due to the strong interaction between the d orbitals of TMs and the p orbitals of N atoms, the binding strengths of TMs with the two 3NV-$CN_xNT$ are significantly enhanced when compared to the pure SWCNTs.

Improvement of Electrical Conductivity of Transparent Conductive Single-Walled Carbon Nanotube Films Fabricated by Surfactant Dispersion

  • Lee, Seung-Ho;Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.17-17
    • /
    • 2009
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as promising materials for transparent conducting films (TCFs), thanks to their superior electrical conductivity, high mechanical strength, and complete flexibility. The CNT-based TCFs can be used in a variety of application fields as flexible, transparent electrodes, including touch panel screens, flexible electronics, transparent heaters, etc. First of all, this study investigated the effect of a variety of surfactants on the dispersion of SWCNTs in an aqueous solution. Following the optimization of the dispersion by surfactants, flexible TCFs were fabricated by spraying the CNT suspension onto poly(ethylene terephthalate) (PET) substrates. The sheet resistances of the TCFs having different surfactants were investigated with treatment in nitric acid ($HNO_3$) whose concentration and period of treatment time were varied. It seems that the $HNO_3$ removes the surfactants from and is simultaneously doped into the SWCNT network, reducing the contact resistance between CNTs. TCFs were characterized by UV-VIS spectroscopy, thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), and four-point probe.

  • PDF