• Title/Summary/Keyword: SWAY

Search Result 628, Processing Time 0.019 seconds

Estimation of Nonpoint Source Pollutant Loads for Rural Watershed by AvSWAT (AvSWAT를 이용한 농촌유역 비점원 오염물질 부하량 예측)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Han, Kuk-Heon;Ruy, Jong-Su;Kim, Suk-Cheol;Yun, Sun-Gang;Lee, Jeong-Taek;Kwun, Soon-Kuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • This study was conducted to evaluate the characteristics of nonpoint source pollutants discharge from a small rural watershed. A typical rural area in Gongju City, Korea, was selected as the research site. Water quality and quantity in streams and rainfall samples were analyzed periodically from May to October 2005. Pollutant loads were estimated from a nonpoint source pollution model (AvSWAT, Arcview Soil and Water Assessment Tool). During the rainy season, from June 26 to 30 September 2005 and the dry season, before 26 June and after 30 September 2005, biological oxygen demands and chemical oxygen demands accounted for 91.3% and 93.7% of annual load, respectively, while total-N and total-P were 97.1% and 91.1% of annual load, respectively. The observed stream flow was $66.5m^3sec^{-1}$, while simulation stream flow was $66.2m^3sec^{-1}$. That can be assumed that simulation can be used to estimate the stream flow without practical measurement. However, the runoff trend following the occurrence of a storm event was not recorded properly.

Path-following Control for Autonomous Navigation of Marine Vessels Considering Disturbances (외력을 고려한 선박의 자율운항을 위한 경로추종 제어)

  • Lee, Sang-Do
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.557-565
    • /
    • 2021
  • Path-following control is considered as one of the most fundamental skills to realize autonomous navigation of marine vessels in the ocean. This study addresses with the path-following control for a ship in which there are environmental disturbances in the directions of the surge, sway, and yaw motions. The guiding principle and back-stepping method was utilized to solve the ship's tracking problem on the reference path generated by a virtual ship. For path-following control, error dynamics is one of the most important skills, and it extends to the research fields of automatic collision avoidance and automatic berthing control. The algorithms for the guiding principles and error variables have been verified by numerical simulation. As a result, most error variables converged to zero values with the controller except for the yaw angle error. One of the most interesting results is that the tracking errors of path-following control between two ships are smaller than the existing safe passing distances considering interaction forces from near passing ships. Moreover, a trade-off between tracking performance and the ship's safety should be considered for determining the proper control parameters to prevent the destructive failure of actuators such as propellers, fins, and rudders during the path-following of marine vessels.

Methods of Regulating Migration Processes in EU Countries

  • Hamova, Oksana;Dergach, Anna;Pikulyk, Oksana;Zolotykh, Irina;Diachenko, Kateryna
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.257-265
    • /
    • 2021
  • Modern methods of regulating migration processes in EU states include a wide variety of adapted, transformed under the sway of globalization tools in order to influence the movement of human capital within the European space. The main purpose of the regulatory policy on migration flows is the redistribution of professionally competent professionals between different spheres of life. Herewith, the determining factor in the effectiveness of such distribution is a rational combination of stimulating and disincentive levers of influence on the movement of citizens of different EU countries and taking into account the motives of such mobility. Modernization of migration management approaches can be a major economic, social, political and cultural progress of European countries. The purpose of the research is to conduct a detailed analysis of existing practices of migration flow management, in particular their stimulation or containment, and to outline key migration trends formed under the influence of multicomponent approaches to migration regulation, transformation of regulatory legislation and changing priorities of modern society. The research methods: statistical-analytical method; ARIS method; method of tabular, graphical and analytical modeling; comparative analysis; systematization, generalization. Results. Current pan-European methods of regulating migration processes are insufficiently adapted to the multinational socialeconomic space; consequently, there are some disparities in the distribution of migrants between EU countries, although the overall dynamics of migration is positive. Fluctuations in the population of European countries during 2000-2019 and trends in the transformation of social-economic space confirm the insufficient level of influence of current methods of regulating migration flows. Along with this, the presence of a characteristic asymmetry in the distribution of migrants requires a greater focus on the modernization of regulatory instruments, in particular, the regulatory mechanism for managing migration processes. As a result of the conducted study, further prospects for the implementation of alternative methods of regulating migration processes in EU states have been outlined; the current and projected limits for increasing the level of observance of migrants' rights at the European level have been clarified through the adoption of appropriate regulatory acts; effective solutions for intensifying the influx of high-quality labor resources from different countries to EU have been identified. The research results can be used to study methods of regulating migration processes in the countries in the global dimension.

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

The Effects of Self-Sit-to-Stand Training Using Multi-Sensory Feedback Device on Balance Ability and Sit-to-Stand Ability in Hemiplegic Stroke Patients (다중감각 되먹임 장치를 이용한 자가 일어서기 훈련이 편마비 환자의 균형능력과 일어서기 동작 수행능력에 미치는 영향)

  • Min, Jun-Ki;Choi, Won-Jae;Jung, Jihye;Lee, Seung-Won
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.157-166
    • /
    • 2022
  • Purpose: The aim of this research was to investigate the effects of self-sit-to-stand training on balance ability and sit-to-stand ability in hemiplegic stroke patients using a multisensory feedback device. Methods: A total of 19 stroke patients participated in this study, and they were divided into two groups: 10 underwent self-sit-to-stand training using a multisensory feedback device, and 9 underwent sit-to-stand training with a physical therapist. In both groups, sit-to-stand training was performed for 30 min, 3 times a week, for 6 weeks. The subjects also underwent physical therapy twice a day for 30 min, 10 times a week, for a total of 60 sessions. Balance ability was evaluated using the AFA-50 and Berg Balance Scale. Sit-to-stand ability was evaluated using the five times sit-to-stand test. Results: Sway length, pressure, and total pressure all significantly increased in both groups, and there was no difference between the two groups. The Berg Balance Scale results showed that balance ability significantly increased in both groups, and there was no difference between the two groups. The five times sit-to-stand test results showed that sit-to-stand ability significantly increased in both groups, and there was no difference between the two groups. It was found that the self-sit-to-stand training using a multisensory feedback device had a positive effect on balance control and sit-to-stand ability. When the two groups were compared, no difference in balance ability or sit-to-stand ability was observed. Conclusion: The findings of this study indicate that self-sit-to-stand training using a multisensory feedback device is as effective as sit-to-stand training with a physical therapist. Hence, self-sit-to-stand training using a multisensory feedback device could be an effective home-based exercise protocol for hemiplegic stroke patients to improve their balance and sit-to-stand abilities.

Effects of Preferred Arch Height and Hardness of the Insole on Static Arch Height and Ankle Stability (인솔의 아치높이 및 경도 선호도가 정적 아치 높이 및 발목 안정성에 미치는 영향)

  • Sihyun Ryu;Young-Seong Lee;Soo-Ji Han;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • Objective: The purpose of this study was to investigate the differences in static arch height and ankle stability according to the preference for insole height and hardness in the arch area. Method: The study participants were 20 adult males (age: 22.7 ± 1.8 yrs., height: 175.3 ± 4.3 cm, body weight: 72.5 ± 7.7 kg). First, the arch heights of all subjects were measured in static postures (sitting and standing). The inversion and eversion movements of the ankle joint were analyzed during walking (1.3 m/s & 1.7 m/s) and running (2.7 m/s & 3.3 m/s). The variables (static arch height, and inversion and eversion angle of ankle joint) were compared by classifying groups according to the preference for the height and hardness of the arch of the insole. First, it was divided into a high arch insole preference group (HAG, n=8) and a low arch insole preference group (LAG, n=12) according to the preference for the arch height of the insole. Second, it was divided into a high hardness insole preference group (HHG, n=7), medium hardness insole preference group (MHG, n=7), and low hardness insole preference group (LHG, n=6), according to the preference for the arch hardness of the insole. Results: First, the range of motion (ROM) of inversion-eversion at the ankle joint during walking was statistically smaller in HAG than in LAG (p<.05). Second, the arch height change of HHG was statistically greater than that of MHG and LHG (p<.05). Conclusion: In the case of flexible flat feet with a large change in arch height, providing a high hardness arch insole that can disperse foot pressure can improve comfort. It was found that people with high medial and lateral sway of the ankle joint preferred a low arch insole, but it is necessary to differentiate and compare the insole heights of the arch part in detail. In addition, in the case of fast motion such as running, the preference for the arch height and hardness of the insole was not related to the static arch height and ankle stability.

A Study on the Sensitivity Analysis of Ship Mooring Evaluation Factors According to Sea Level Rise in Mokpo Port (목포항 해수면 상승에 따른 선박 계류평가요소의 민감도 분석 연구)

  • Seungyeon Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.445-455
    • /
    • 2023
  • Sea level rise due to global warming is accelerating. According to the IPCC survey, the expected sea level rise in 2100 was analyzed to be 47cm in the low-carbon scenario (SSP 1-2.6) and 82cm in the high-carbon scenario (SSP 5-8.5). Sea level rise can cause serious damage to port infrastructure and reduce the safety of ships docked inside ports. In this study, Mokpo Port, which frequently suffers from flooding during high tide, was selected and the sensitivity of mooring evaluation factors was analyzed for actual berthing ships according to sea level rise scenarios. From the analysis, we found that the tension of mooring line, the load of bollard, vertical angle of mooring line, and ship's motion of 6-DOF, which are evaluation factors, generally increased when the sea level increased. The most sensitive evaluation factor was sway motion of 6-DOF. Also, we analyzed that the value of mooring evaluation factors decreased when the crown height was raised. This was beneficial in improving ship and pier safety. The results of this study can be used as basic data to secure measures to improve port and ship safety according to sea level rise in Mokpo Port.

Effects of Wearing Toe Braces of Hallux Valgus on Gait during Virtual Environment Simulation (무지외반증 발가락 교정기 착용 여부가 가상 환경 시뮬레이션 시 보행에 미치는 영향)

  • Dong-Su Kim;Da-Eun Lee;Hyun-A Shin;Ji-Won Jeon;Young-Keun Woo
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Purpose: Hallux valgus (HV) is one of the most common chronic foot disorders, occurring when the first toe deviates laterally toward the other toe. HV impairs muscle strength and affects gait function (postural sway and gait speed). Thus, this study aims to investigate using the FDM system the effect of wearing braces on gait while wearing a virtual reality (VR) device. Methods: This study was conducted on 28 healthy adults with HV of 15 degrees or more. To compare differences in walking, depending on whether a toe brace can be worn, the subject walked without wearing anything, walked after wearing the VR device, and walked after wearing the VR device and the toe brace, and the FDM system was used for the gait ability measurement analysis. Results: As a result of a one-way repeated analysis of variance, the walking speed-related variables (cadence, velocity, etc.) in the HV group were higher during comfortable walking. In addition, walking while wearing a VR device and walking while wearing a VR device and a toe brace demonstrated more significant values in terms of six gait parameters (double stance phase, loading response, stage, stage, stage, and stage). The maximum pressure of the forefoot was significantly reduced when walking while wearing a VR device and a toe brace compared to comfortable walking, but in all variables, there was no statistically significant difference between walking while wearing a VR device and walking while wearing a VR device and a toe brace. Conclusion: Orthosis with a VR device during gait (OVG) and gait with a VR device (GVR) affect gait in HV patients. However, there was no significant difference between GVR and OVG. Thus, it is necessary to conduct experiments on various HV angles and increase the duration of wearing the toe brace.