DOI QR코드

DOI QR Code

Effects of Preferred Arch Height and Hardness of the Insole on Static Arch Height and Ankle Stability

인솔의 아치높이 및 경도 선호도가 정적 아치 높이 및 발목 안정성에 미치는 영향

  • Sihyun Ryu (Motion Innovation Center, Korea National Sport University) ;
  • Young-Seong Lee (Motion Innovation Center, Korea National Sport University) ;
  • Soo-Ji Han (Motion Innovation Center, Korea National Sport University) ;
  • Sang-Kyoon Park (Motion Innovation Center, Korea National Sport University)
  • Received : 2023.03.06
  • Accepted : 2023.03.21
  • Published : 2023.03.31

Abstract

Objective: The purpose of this study was to investigate the differences in static arch height and ankle stability according to the preference for insole height and hardness in the arch area. Method: The study participants were 20 adult males (age: 22.7 ± 1.8 yrs., height: 175.3 ± 4.3 cm, body weight: 72.5 ± 7.7 kg). First, the arch heights of all subjects were measured in static postures (sitting and standing). The inversion and eversion movements of the ankle joint were analyzed during walking (1.3 m/s & 1.7 m/s) and running (2.7 m/s & 3.3 m/s). The variables (static arch height, and inversion and eversion angle of ankle joint) were compared by classifying groups according to the preference for the height and hardness of the arch of the insole. First, it was divided into a high arch insole preference group (HAG, n=8) and a low arch insole preference group (LAG, n=12) according to the preference for the arch height of the insole. Second, it was divided into a high hardness insole preference group (HHG, n=7), medium hardness insole preference group (MHG, n=7), and low hardness insole preference group (LHG, n=6), according to the preference for the arch hardness of the insole. Results: First, the range of motion (ROM) of inversion-eversion at the ankle joint during walking was statistically smaller in HAG than in LAG (p<.05). Second, the arch height change of HHG was statistically greater than that of MHG and LHG (p<.05). Conclusion: In the case of flexible flat feet with a large change in arch height, providing a high hardness arch insole that can disperse foot pressure can improve comfort. It was found that people with high medial and lateral sway of the ankle joint preferred a low arch insole, but it is necessary to differentiate and compare the insole heights of the arch part in detail. In addition, in the case of fast motion such as running, the preference for the arch height and hardness of the insole was not related to the static arch height and ankle stability.

Keywords

Acknowledgement

This work was supported by the Technology development Program (S3302375) funded by the Ministry of SMEs and Startups (MSS, Korea) and PRO-SPECS of LS Networks (Seoul, Korea).

References

  1. Anderson, J., Williams, A. E. & Nester, C. (2020). Development and evaluation of a dual density insole for people standing for long periods of time at work. Journal of Foot and Ankle Research, 13, 1-13. https://doi.org/10.1186/s13047-020-0369-3
  2. Buerk, A. A. & Albert, M. C. (2001). Advances in pediatric foot and ankle treatment. Current Opinion in Orthopaedics, 12(6), 437-442. https://doi.org/10.1097/00001433-200112000-00002
  3. Cen, X., Xu, D., Baker, J. S. & Gu, Y. (2020). Effect of additional body weight on arch index and dynamic plantar pressure distribution during walking and gait termination. PeerJ, 8, e8998.
  4. Chiu, M. C. & Wang, M. J. J. (2007). Professional footwear evaluation for clinical nurses. Applied Ergonomics, 38(2), 133-141. https://doi.org/10.1016/j.apergo.2006.03.012
  5. Flemister, A. S., Neville, C. G. & Houck, J. (2007). The relationship between ankle, hindfoot, and forefoot position and posterior tibial muscle excursion. Foot & Ankle International, 28(4), 448-455. https://doi.org/10.3113/FAI.2007.0448
  6. Gilmour, J. C. & Burns, Y. (2001). The measurement of the medial longitudinal arch in children. Foot & Ankle International, 22(6), 493-498. https://doi.org/10.1177/107110070102200607
  7. Hamill, J. & Ryu, J. (2003). Experiment in sport biomechanics. Daehan media, 186-193.
  8. Han, K. H., Bae, K. H., Jung, H. G., Ha, M. S., Choi, D. Y., Lee, J. S. & Yang, J. O. (2018). Comparison of plantar pressure and COP parameters in three types of arch support insole during stair descent in elderly with flatfoot. Journal of the Korean Applied Science and Technology, 35(3), 948-955.
  9. Han, K. H. & Shin, J. H. (2018). Difference in Muscle Activity of the Lower Extremity Muscles according to the Type of Functional Insole during Normal Walking. The Korea Journal of Sports Science, 27(2), 1251-1258.
  10. Hollander, K., Zech, A., Rahlf, A. L., Orendurff, M. S., Stebbins, J. & Heidt, C. (2019). The relationship between static and dynamic foot posture and running biomechanics: A systematic review and meta-analysis. Gait & Posture, 72, 109-122. https://doi.org/10.1016/j.gaitpost.2019.05.031
  11. Kim, B. (2021). Up-To-Date Knowledge for Foot Disorders. Korean Journal of Family Practice, 11(1), 10-13. https://doi.org/10.21215/kjfp.2021.11.1.10
  12. Kim, H. W., Park, J., Kang, E. S. & Park, H. W. (2001). The pediatric flatfoot: its differential diagnosis and management. Journal of Korean Foot and Ankle Society, 5(1), 91-101.
  13. Krauss, I., Grau, S., Mauch, M., Maiwald, C. & Horstmann, T. (2008). Sex-related differences in foot shape. Ergonomics, 51(11), 1693-1709. https://doi.org/10.1080/00140130802376026
  14. Kuhn, D. R., Shibley, N. J., Austin, W. M. & Yochum, T. R. (1999). Radiographic evaluation of weight-bearing orthotics and their effect on flexible pes planus. Journal of Manipulative and Physiological Therapeutics, 22(4), 221-226. https://doi.org/10.1016/S0161-4754(99)70048-5
  15. Langley, B., Cramp, M. & Morrison, S. C. (2015). Selected static foot assessments do not predict medial longitudinal arch motion during running. Journal of Foot and Ankle Research, 8(1), 1-6. https://doi.org/10.1186/s13047-014-0058-1
  16. Ledoux, W. R., Shofer, J. B., Ahroni, J. H., Smith, D. G., Sangeorzan, B. J. & Boyko, E. J. (2003). Biomechanical differences among pes cavus, neutrally aligned, and pes planus feet in subjects with diabetes. Foot & Ankle International, 24(11), 845-850. https://doi.org/10.1177/107110070302401107
  17. Lee, J. H., Lee, J. O., Park, S. H. & Lee, Y. S. (2007). Biomechanical gait analysis and simulation on the normal, cavus and flat foot with orthotics. Transactions of the Korean Society of Mechanical Engineers A, 31(11), 1115-1123. https://doi.org/10.3795/KSME-A.2007.31.11.1115
  18. Lullini, G., Giangrande, A., Caravaggi, P., Leardini, A. & Berti, L. (2020). Functional evaluation of a shock absorbing insole during military training in a group of soldiers: a pilot study. Military Medicine, 185(5-6), e643-e648. https://doi.org/10.1093/milmed/usaa032
  19. Mauch, M., Grau, S., Krauss, I., Maiwald, C. & Horstmann, T. (2009). A new approach to children's footwear based on foot type classification. Ergonomics, 52(8), 999-1008. https://doi.org/10.1080/00140130902803549
  20. Miyamoto, T., Otake, Y., Nakao, S., Kurokawa, H., Kosugi, S., Taniguchi, A., Soufi, M., Sato, Y. & Tanaka, Y. (2023). 4D-foot analysis on effect of arch support on ankle, subtalar, and talonavicular joint kinematics. Journal of Orthopaedic Science, 2023.
  21. MUNDERMANN, A., Stefanyshyn, D. J. & Nigg, B. M. (2001). Relationship between footwear comfort of shoe inserts and anthropometric and sensory factors. Medicine & Science in Sports & Exercise, 33(11), 1939-1945. https://doi.org/10.1097/00005768-200111000-00021
  22. Nigg, B. M., Khan, A., Fisher, V. & Stefanyshyn, D. (1998). Effect of shoe insert construction on foot and leg movement. Medicine and Science in Sports and Exercise, 30(4), 550-555. https://doi.org/10.1097/00005768-199804000-00013
  23. Park, J. S., Seo, S. K., Lee, S. H., Jung, H. S. & Lim, J. H. (2010). The Effects of the Insole Types on Lower Leg Muscle Activity during Treadmill Walking. Journal of the Korean Academy of Clinical Electrophysiology, 8(2), 33-37. https://doi.org/10.5627/KACE.2010.8.2.033
  24. Park, S. B., Park, J. Y. & Kim, K. H. (2010). Biomechanical analysis of arch support devices on normal and low arch. Korean Journal of Sport Biomechanics, 20(1), 91-99. https://doi.org/10.5103/KJSB.2010.20.1.091
  25. Penny, J. O., Speedtsberg, M. B., Kallemose, T. & Bencke, J. (2018). Can an off-the-rack orthotic stiletto alter pressure and comfort scores in the forefoot, arch and heel?. Ergonomics, 61(8), 1130-1138. https://doi.org/10.1080/00140139.2018.1443518
  26. Ryu, S., Gil, H., Kong, S., Choi, Y., Ryu, J., Yoon, S. & Park, S. K. (2018), The Effects of Insole Material and Hardness in Different Plantar Sites on the Comfort and Impact Absorption. Journal of the Ergonomics Society of Korea, 37(4), 475-487. https://doi.org/10.5143/JESK.2018.37.4.475
  27. Ryu, S. & Park, S. (2020). Effects of Heel Shape of a Shoe on the Impact and Biomechanical Characteristics during Walking. Journal of the Ergonomics Society of Korea, 39(3), 191-203. https://doi.org/10.5143/jesk.2020.39.3.191
  28. Ryu, S. & Park, S. (2021). The Changes in Ground Reaction Force and the Long-term Comfort during Walking by Wearing Modified Hardness of the Insole in the Areas of Fore-foot and Rear-foot. Journal of the Ergonomics Society of Korea, 40(1), 33-43. https://doi.org/10.5143/JESK.2021.40.1.33
  29. Ryu, S., Stefanyshyn, D., Kong, S. & Park, S. K. (2021). Effects of a Curved Heel Shape in a Running Shoe on Biomechanical Variables and Comfort. Applied Sciences, 11(8), 3613.
  30. Sarikhani, A., Motalebizadeh, A., Asiaei, S. & Kamali Doost Azad, B. (2016). Studying maximum plantar stress per insole design using foot CT-scan images of hyperelastic soft tissues. Applied Bionics and Biomechanics, 2016.
  31. Su, S., Mo, Z., Guo, J. & Fan, Y. (2017). The effect of arch height and material hardness of personalized insole on correction and tissues of flatfoot. Journal of Healthcare Engineering, 2017.
  32. Tang, S. F. T., Chen, C. H., Wu, C. K., Hong, W. H., Chen, K. J. & Chen, C. K. (2015). The effects of total contact insole with forefoot medial posting on rearfoot movement and foot pressure distributions in patients with flexible flatfoot. Clinical Neurology and Neurosurgery, 129, S8-S11. https://doi.org/10.1016/S0303-8467(15)30004-4
  33. Teyhen, D. S., Stoltenberg, B. E., Collinsworth, K. M., Giesel, C. L., Williams, D. G., Kardouni, C. H., Molloy, J. M., Goffar, S. L., Christie, D. S. & McPoil, T. (2009). Dynamic plantar pressure parameters associated with static arch height index during gait. Clinical Biomechanics, 24(4), 391-396. https://doi.org/10.1016/j.clinbiomech.2009.01.006
  34. Ugolini, P. A. & Raikin, S. M. (2004). The accessory navicular. Foot and Ankle Clinics, 9(1), 165-180. https://doi.org/10.1016/S1083-7515(03)00176-1
  35. Wang, Y. T., Chen, J. C. & Lin, Y. S. (2020). Effects of artificial texture insoles and foot arches on improving arch collapse in flat feet. Sensors, 20(13), 3667.
  36. Williams, D. S. & McClay, I. S. (2000). Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Physical Therapy, 80(9), 864-871. https://doi.org/10.1093/ptj/80.9.864
  37. Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement. John Wiley & Sons.
  38. Zhao, X., Gu, Y., Yu, J., Ma, Y. & Zhou, Z. (2020). The influence of gender, age, and body mass index on arch height and arch stiffness. The Journal of Foot and Ankle Surgery, 59(2), 298-302.  https://doi.org/10.1053/j.jfas.2019.08.022