• 제목/요약/키워드: SVM control

검색결과 215건 처리시간 0.026초

충전데이터를 이용한 이상감지 제어시스템 (Abnormality Detection Control System using Charging Data)

  • Moon, Sang-Ho
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.313-316
    • /
    • 2022
  • In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data.

A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden

  • Gong, Zheng;Dai, Peng;Wu, Xiaojie;Deng, Fujin;Liu, Dong;Chen, Zhe
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.136-148
    • /
    • 2017
  • In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector modulation (SVM) is proposed. By the hierarchical structure of different cost functions, load currents can be controlled well and common mode voltage can be maintained at low values. The proposed strategy could be easily expanded to the systems with high number of voltage levels while the amount of required calculation is significantly reduced and the advantages of the conventional FCS-MPC strategy are reserved. In addition, a HMPVC-based field oriented control scheme is applied to a drive system with the NPC/H-Bridge converter. Both steady-state and transient performances are evaluated by simulations and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.

가우시안 입자 군집 최적화를 이용한 사람의 통합된 검출 및 추적 (Unified Detection and Tracking of Humans Using Gaussian Particle Swarm Optimization)

  • 안성태;김정중;이주장
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.353-358
    • /
    • 2012
  • Human detection is a challenging task in many fields because it is difficult to detect humans due to their variable appearance and posture. Furthermore, it is also hard to track the detected human because of their dynamic and unpredictable behavior. The evaluation speed of method is also important as well as its accuracy. In this paper, we propose unified detection and tracking method for humans using Gaussian-PSO (Gaussian Particle Swarm Optimization) with the HOG (Histograms of Oriented Gradients) features to achieve a fast and accurate performance. Keeping the robustness of HOG features on human detection, we raise the process speed in detection and tracking so that it can be used for real-time applications. These advantages are given by a simple process which needs just one linear-SVM classifier with HOG features and Gaussian-PSO procedure for the both of detection and tracking.

Gabor Filter Bank를 이용한 보행자 검출 알고리즘 (Pedestrian Detection Algorithm using a Gabor Filter Bank)

  • 이세원;장진원;백광렬
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.930-935
    • /
    • 2014
  • A Gabor filter is a linear filter used for edge detectionas frequency and orientation representations of Gabor filters are similar to those of the human visual system. In this thesis, we propose a pedestrian detection algorithm using a Gabor filter bank. In order to extract the features of the pedestrian, we use various image processing algorithms and data structure algorithms. First, color image segmentation is performed to consider the information of the RGB color space. Second, histogram equalization is performed to enhance the brightness of the input images. Third, convolution is performed between a Gabor filter bank and the enhanced images. Fourth, statistical values are calculated by using the integral image (summed area table) method. The calculated statistical values are used for the feature matrix of the pedestrian area. To evaluate the proposed algorithm, the INRIA pedestrian database and SVM (Support Vector Machine) are used, and we compare the proposed algorithm and the HOG (Histogram of Oriented Gradient) pedestrian detector, presentlyreferred to as the methodology of pedestrian detection algorithm. The experimental results show that the proposed algorithm is more accurate compared to the HOG pedestrian detector.

머신비전을 이용한 도로상의 보행자 검출에 관한 연구 (A Study on the Pedestrian Detection on the Road Using Machine Vision)

  • 이병룡;;김형석;배용환
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.490-498
    • /
    • 2011
  • In this paper, we present a two-stage vision-based approach to detect multi views of pedestrian in road scene images. The first stage is HG (Hypothesis Generation), in which potential pedestrian are hypothesized. During the hypothesis generation step, we use a vertical, horizontal edge map, and different colors between road background and pedestrian's clothes to determine the leg position of pedestrian, then a novel symmetry peaks processing is performed to define how many pedestrians is covered in one potential candidate region. Finally, the real candidate region where pedestrian exists will be constructed. The second stage is HV (Hypothesis Verification). In this stage, all hypotheses are verified by Support Vector Machine for classification, which is robust for multi views of pedestrian detection and recognition problems.

Two Layer Multiquadric-Biharmonic Artificial Neural Network for Area Quasigeoid Surface Approximation with GPS-Levelling Data

  • Deng, Xingsheng;Wang, Xinzhou
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.101-106
    • /
    • 2006
  • The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There are several methods for geoidal undulation determination. The paper presents a method employing a simple architecture Two Layer Multiquadric-Biharmonic Artificial Neural Network (TLMB-ANN) to approximate an area of 4200 square kilometres quasigeoid surface with GPS-levelling data. Hardy’s Multiquadric-Biharmonic functions is used as the hidden layer neurons’ activation function and Levenberg-Marquardt algorithm is used to train the artificial neural network. In numerical examples five surfaces were compared: the gravimetric geometry hybrid quasigeoid, Support Vector Machine (SVM) model, Hybrid Fuzzy Neural Network (HFNN) model, Traditional Three Layer Artificial Neural Network (ANN) with tanh activation function and TLMB-ANN surface approximation. The effectiveness of TLMB-ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are similar with those obtained by gravity and geometry hybrid method. Importantly, TLMB-ANN surface approximation model possesses good extrapolation performance with high precision.

  • PDF

자율주행 제어를 위한 향상된 주변환경 인식 알고리즘 (Improved Environment Recognition Algorithms for Autonomous Vehicle Control)

  • 배인환;김영후;김태경;오민호;주현수;김슬기;신관준;윤선재;이채진;임용섭;최경호
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구 (A study on EPB shield TBM face pressure prediction using machine learning algorithms)

  • 권기범;최항석;오주영;김동구
    • 한국터널지하공간학회 논문집
    • /
    • 제24권2호
    • /
    • pp.217-230
    • /
    • 2022
  • 쉴드TBM (Tunnel Boring Machine) 터널 시공에 있어 막장압 관리는 막장면 붕괴, 지반침하 등을 방지하여 막장 안정성을 유지하는 데 중요한 역할을 담당한다. 특히, 챔버 내부의 굴착토로 막장압을 조절하는 토압식 쉴드TBM의 경우, 이수식 쉴드TBM에 비해 막장압의 관리가 어렵다. 본 연구에서는 국내 토압식 쉴드TBM 터널 시공 현장의 지반조건 및 굴진특성 데이터를 분석하여, 토압식 쉴드TBM 터널의 세그먼트 링별 막장압 예측모델을 제시하였다. 예측모델의 입력특성으로 7가지를 선정하였으며, 912개의 학습 데이터 세트(Training data set)와 228개의 시험 데이터 세트(Test data set)를 확보하였다. 최적의 토압식 쉴드TBM 막장압 예측모델 선정을 위하여 KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), XGB (eXtreme Gradient Boosting) 모델의 하이퍼파라미터(Hyperparameter)를 최적화하여 예측성능을 비교한 결과, RF 모델이 7.35 kPa의 평균 제곱근 오차(Root Mean Square Error, RMSE)로 가장 우수한 성능을 나타냈다. 추가적으로, RF 모델의 특성 중요도(Feature importance) 분석을 수행한 결과, 입력특성 중 수압의 영향도가 0.38로 가장 높았으며, 전반적으로 지반조건이 굴진특성보다 높은 중요도를 보여주었다.

Support Vector Machine 기반 Genetic Algorithm과 Binary PSO를 이용한 최적의 EEG 채널 선택 기법 (Optimal EEG Channel Selection by Genetic Algorithm and Binary PSO based on a Support Vector Machine)

  • 김준엽;박승민;고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.527-533
    • /
    • 2013
  • BCI (Brain-Computer Interface) is a system that transforms a subject's brain signal related to their intention into a control signal by classifying EEG (electroencephalograph) signals obtained during the imagination of movement of a subject's limbs. The BCI system allows us to control machines such as robot arms or wheelchairs only by imaging limbs. With the exact same experiment environment, activated brain regions of each subjects are totally different. In that case, a simple approach is to use as many channels as possible when measuring brain signals. However the problem is that using many channels also causes other problems. When applying a CSP (Common Spatial Pattern), which is an EEG extraction method, many channels cause an overfitting problem, and in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest an optimal channel selection method using a BPSO (Binary Particle Swarm Optimization), BPSO with channel impact factor, and GA. This paper examined optimal selected channels among all channels using three optimization methods and compared the classification accuracy and the number of selected channels between BPSO, BPSO with channel impact factor, and GA by SVM (Support Vector Machine). The result showed that BPSO with channel impact factor selected 2 fewer channels and even improved accuracy by 10.17~11.34% compared with BPSO and GA.

Stereo Calibration Using Support Vector Machine

  • Kim, Se-Hoon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.250-255
    • /
    • 2003
  • The position of a 3-dimensional(3D) point can be measured by using calibrated stereo camera. To obtain more accurate measurement ,more accurate camera calibration is required. There are many existing methods to calibrate camera. The simple linear methods are usually not accurate due to nonlinear lens distortion. The nonlinear methods are accurate more than linear method, but it increase computational cost and good initial guess is needed. The multi step methods need to know some camera parameters of used camera. Recent years, these explicit model based camera calibration work with the development of more precise camera models involving correction of lens distortion. But these explicit model based camera calibration have disadvantages. So implicit camera calibration methods have been derived. One of the popular implicit camera calibration method is to use neural network. In this paper, we propose implicit stereo camera calibration method for 3D reconstruction using support vector machine. SVM can learn the relationship between 3D coordinate and image coordinate, and it shows the robust property with the presence of noise and lens distortion, results of simulation are shown in section 4.

  • PDF