• 제목/요약/키워드: SVM (Support Vector Method)

검색결과 658건 처리시간 0.035초

인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상에서의 얼굴 검출 (Face Detection for Interactive TV Control System in Near Infra-Red Images)

  • 원철호
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.388-392
    • /
    • 2011
  • In this paper, a face detection method for interactive TV control system using a new feature, edge histogram feature, with a support vector machine(SVM) in the near-infrared(NIR) images is proposed. The edge histogram feature is extracted using 16-directional edge intensity and a histogram. Compared to the previous method using local binary pattern(LBP) feature, the proposed method using edge histogram feature has better performance in both smaller feature size and lower equal error rate(EER) for face detection experiments in NIR databases.

SVM과 PCA를 이용한 국부 외형 기반 얼굴 인식 방법 (Local Appearance-based Face Recognition Using SVM and PCA)

  • 박승환;곽노준
    • 대한전자공학회논문지SP
    • /
    • 제47권3호
    • /
    • pp.54-60
    • /
    • 2010
  • 얼굴 인식 방법 중에 한 얼굴 영상을 분할하여 분할한 각 부분마다 통계적 방법을 적용해 특징추출을 수행한 다음 각 부분마다 분류를 수행하고 이러한 분류결과를 모아서 voting등의 방법으로 얼굴 인식을 수행 하는 방법을 국부 외형 기반 방법(local appearance-based method) 이라고 한다. 기존에 제안된 국부 외형 기반 얼굴 인식은 얼굴 영상을 일정한 크기로 단순분할하고, 그 부분들을 모두 인식에 사용한다. 본고에서는 인식에 상대적으로 중요한 부분만을 사용하여 얼굴 인식을 수행하는 새로운 국부 외형 기반 얼굴 인식 방법을 제안한다. 본고에서는 단순 분할 방법 대신에 눈, 코, 입 등 인물 간의 차이가 잘 나타나는 얼굴 부분들을 support vector machine (SVM) 을 이용하여 검출한 후, 검출한 각 부분에 주성분 분석 (PCA) 을 적용하고 이를 통합하여 얼굴 인식을 수행하였다. 실험을 통해 제안한 방법과 기존 방법의 성능을 비교한 결과, 제안한 방법이 기존의 국부 외형 기반 방법의 장점을 지니는 동시에 성능을 개선시킴을 확인하였다.

앙상블 SVM 모형을 이용한 기업 부도 예측 (Bankruptcy prediction using ensemble SVM model)

  • 최하나;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1113-1125
    • /
    • 2013
  • 기업의 부도를 예측하는 것은 회계나 재무 분야에서 중요한 연구주제이다. 지금까지 기업 부도예측을 위해 여러 가지 데이터마이닝 기법들이 적용되었으나 주로 단일 모형을 사용함으로서 복잡한 분류 문제에의 적용에 한계를 갖고 있었다. 본 논문에서는 최근에 각광받고 있는 SVM (support vector machine) 모형들을 결합한 앙상블 SVM 모형 (ensemble SVM model)을 부도예측에 사용하고자 한다. 제안된 앙상블 모형은 v-조각 교차 타당성 (v-fold cross-validation)에 의해 얻어진 여러 가지 모형 중에서 성능이 좋은 상위 k개의 단일 모형으로 구성하고 과반수 투표 방식 (majority voting)을 사용하여 미지의 클래스를 분류한다. 본 논문에서 제안된 앙상블 SVM 모형의 성능을 평가하기 위해 실제 기업의 재무비율 자료와 모의실험자료를 가지고 실험하였고, 실험결과 제안된 앙상블 모형이 여러 가지 평가척도 하에서 단일 SVM 모형들보다 좋은 성능을 보임을 알 수 있었다.

웨이블렛변환과 서포트벡터머신을 이용한 저대비·불균일·무특징 표면 결함 분류에 관한 연구 (A Study on the Defect Classification of Low-contrast·Uneven·Featureless Surface Using Wavelet Transform and Support Vector Machine)

  • 김성주;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.1-6
    • /
    • 2020
  • In this paper, a method for improving the defect classification performance in steel plate surface has been studied, based on DWT(discrete wavelet transform) and SVM(support vector machine). Surface images of the steel plate have low contrast, uneven, and featureless, so that the contrast between defect and defect-free regions is not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. In order to improve the characteristics of these images, a synthetic images based on discrete wavelet transform are modeled. Using the synthetic images, edge-based features are extracted and also geometrical features are computed. SVM was configured in order to classify defect images using extracted features. As results of the experiment, the support vector machine based classifier showed good classification performance of 94.3%. The proposed classifier is expected to contribute to the key element of inspection process in smart factory.

지지벡터회귀분석을 이용한 무기체계 신뢰도 예측기법 (A Reliability Prediction Method for Weapon Systems using Support Vector Regression)

  • 나일용
    • 한국군사과학기술학회지
    • /
    • 제16권5호
    • /
    • pp.675-682
    • /
    • 2013
  • Reliability analysis and prediction of next failure time is critical to sustain weapon systems, concerning scheduled maintenance, spare parts replacement and maintenance interventions, etc. Since 1981, many methodology derived from various probabilistic and statistical theories has been suggested to do that activity. Nowadays, many A.I. tools have been used to support these predictions. Support Vector Regression(SVR) is a nonlinear regression technique extended from support vector machine. SVR can fit data flexibly and it has a wide variety of applications. This paper utilizes SVM and SVR with combining time series to predict the next failure time based on historical failure data. A numerical case using failure data from the military equipment is presented to demonstrate the performance of the proposed approach. Finally, the proposed approach is proved meaningful to predict next failure point and to estimate instantaneous failure rate and MTBF.

Support Vector Machine Based Phoneme Segmentation for Lip Synch Application

  • Lee, Kun-Young;Ko, Han-Seok
    • 음성과학
    • /
    • 제11권2호
    • /
    • pp.193-210
    • /
    • 2004
  • In this paper, we develop a real time lip-synch system that activates 2-D avatar's lip motion in synch with an incoming speech utterance. To realize the 'real time' operation of the system, we contain the processing time by invoking merge and split procedures performing coarse-to-fine phoneme classification. At each stage of phoneme classification, we apply the support vector machine (SVM) to reduce the computational load while retraining the desired accuracy. The coarse-to-fine phoneme classification is accomplished via two stages of feature extraction: first, each speech frame is acoustically analyzed for 3 classes of lip opening using Mel Frequency Cepstral Coefficients (MFCC) as a feature; secondly, each frame is further refined in classification for detailed lip shape using formant information. We implemented the system with 2-D lip animation that shows the effectiveness of the proposed two-stage procedure in accomplishing a real-time lip-synch task. It was observed that the method of using phoneme merging and SVM achieved about twice faster speed in recognition than the method employing the Hidden Markov Model (HMM). A typical latency time per a single frame observed for our method was in the order of 18.22 milliseconds while an HMM method applied under identical conditions resulted about 30.67 milliseconds.

  • PDF

SVM 학습 알고리즘을 이용한 자동차 썬루프의 부품 유무 비전검사 시스템 (A Learning-based Visual Inspection System for Part Verification in a Panorama Sunroof Assembly Line using the SVM Algorithm)

  • 김기석;이삭;조재수
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1099-1104
    • /
    • 2013
  • This paper presents a learning-based visual inspection method that addresses the need for an improved adaptability of a visual inspection system for parts verification in panorama sunroof assembly lines. It is essential to ensure that the many parts required (bolts and nuts, etc.) are properly installed in the PLC sunroof manufacturing process. Instead of human inspectors, a visual inspection system can automatically perform parts verification tasks to assure that parts are properly installed while rejecting any that are improperly assembled. The proposed visual inspection method is able to adapt to changing inspection tasks and environmental conditions through an efficient learning process. The proposed system consists of two major modules: learning mode and test mode. The SVM (Support Vector Machine) learning algorithm is employed to implement part learning and verification. The proposed method is very robust for changing environmental conditions, and various experimental results show the effectiveness of the proposed method.

Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류 (Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine)

  • 조익성;권혁숭;김주만;김선종
    • 한국정보통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.117-126
    • /
    • 2019
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지, 시계열 주파수 분석, 비선형 분석법 등이 연구되어 왔다. 이러한 방법들은 분류율를 향상시키기 위해 정확한 특징점과 많은 양의 신호를 처리해야 하기 때문에 데이터의 가공 및 연산이 복잡하며, 다양한 부정맥을 분류하는데 어려움이 있다. 본 연구에서는 AR(Auto Regressive) 모델링 기반의 특징점 추출과 SVM(Support Vector Machine)을 통한 조기수축 부정맥 분류 방법을 제안한다. 이를 위해 잡음을 제거한 ECG 신호에서 R파를 검출하고 QRS와 RR 간격의 특정 파형 구간을 모델링하였다. 이후 최적 세그먼트 길이(n1, n2), 최적 차수( p1, p2)의 4가지 AR 모델링 변수를 추출하고 SVM을 통해 Normal, PVC, PAC를 분류하였다. 연구의 타당성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 대상으로 한 R파의 평균 검출 성능은 99.77%, Normal, PVC, PAC 부정맥은 각각 99.23%, 97.28, 96.62의 평균 분류율을 나타내었다.

Weighted LS-SVM Regression for Right Censored Data

  • Kim, Dae-Hak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • 제13권3호
    • /
    • pp.765-776
    • /
    • 2006
  • In this paper we propose an estimation method on the regression model with randomly censored observations of the training data set. The weighted least squares support vector machine regression is applied for the regression function estimation by incorporating the weights assessed upon each observation in the optimization problem. Numerical examples are given to show the performance of the proposed estimation method.

망막색소변성 데이터의 예후 예측을 위한 패턴 분류 (Pattern Classification of Retinitis Pigmentosa Data for Prediction of Prognosis)

  • 김현미;우용태;정성환
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.701-710
    • /
    • 2012
  • 망막색소변성(RP: Retinitis Pigmentosa)이란 가장 흔한 유전성 망막질환이다. 정상적인 사회활동을 영위하던 사람들이 이 질병으로 시력이 손상되면서 좌절과 고통을 겪는다. 또한 국가적 차원에서 이들의 경제활동이 끊김에 따라 경제활동 인구 감소에 따른 손실 또한 크다고 하겠다. 이에 망막색소변성 질환에 대한 임상 예후 정보를 제공할 수 있는 연구기반이 절실히 요구되고 있다. 본 연구는 망막색소변성 데이터에 대한 패턴 분류를 통해 예후 예측이 가능함을 제안한다. 기존에는 주로 SPSS등을 활용한 통계 처리 결과가 데이터 분석에 적용되었다. 그러나 본 연구에서는 기계학습과 자동 패턴 분류를 실험하였다. SVM(Support Vector Machine)과 여러 다양한 패턴분류기들을 실험을 위해 사용하였다. 제안한 방법은 SVM 분류기에 의하여 RP 데이터가 자동적으로 분류된 결과를 바탕으로 예후 예측이 가능함을 확인하였다.