In this paper, a face detection method for interactive TV control system using a new feature, edge histogram feature, with a support vector machine(SVM) in the near-infrared(NIR) images is proposed. The edge histogram feature is extracted using 16-directional edge intensity and a histogram. Compared to the previous method using local binary pattern(LBP) feature, the proposed method using edge histogram feature has better performance in both smaller feature size and lower equal error rate(EER) for face detection experiments in NIR databases.
얼굴 인식 방법 중에 한 얼굴 영상을 분할하여 분할한 각 부분마다 통계적 방법을 적용해 특징추출을 수행한 다음 각 부분마다 분류를 수행하고 이러한 분류결과를 모아서 voting등의 방법으로 얼굴 인식을 수행 하는 방법을 국부 외형 기반 방법(local appearance-based method) 이라고 한다. 기존에 제안된 국부 외형 기반 얼굴 인식은 얼굴 영상을 일정한 크기로 단순분할하고, 그 부분들을 모두 인식에 사용한다. 본고에서는 인식에 상대적으로 중요한 부분만을 사용하여 얼굴 인식을 수행하는 새로운 국부 외형 기반 얼굴 인식 방법을 제안한다. 본고에서는 단순 분할 방법 대신에 눈, 코, 입 등 인물 간의 차이가 잘 나타나는 얼굴 부분들을 support vector machine (SVM) 을 이용하여 검출한 후, 검출한 각 부분에 주성분 분석 (PCA) 을 적용하고 이를 통합하여 얼굴 인식을 수행하였다. 실험을 통해 제안한 방법과 기존 방법의 성능을 비교한 결과, 제안한 방법이 기존의 국부 외형 기반 방법의 장점을 지니는 동시에 성능을 개선시킴을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제24권6호
/
pp.1113-1125
/
2013
기업의 부도를 예측하는 것은 회계나 재무 분야에서 중요한 연구주제이다. 지금까지 기업 부도예측을 위해 여러 가지 데이터마이닝 기법들이 적용되었으나 주로 단일 모형을 사용함으로서 복잡한 분류 문제에의 적용에 한계를 갖고 있었다. 본 논문에서는 최근에 각광받고 있는 SVM (support vector machine) 모형들을 결합한 앙상블 SVM 모형 (ensemble SVM model)을 부도예측에 사용하고자 한다. 제안된 앙상블 모형은 v-조각 교차 타당성 (v-fold cross-validation)에 의해 얻어진 여러 가지 모형 중에서 성능이 좋은 상위 k개의 단일 모형으로 구성하고 과반수 투표 방식 (majority voting)을 사용하여 미지의 클래스를 분류한다. 본 논문에서 제안된 앙상블 SVM 모형의 성능을 평가하기 위해 실제 기업의 재무비율 자료와 모의실험자료를 가지고 실험하였고, 실험결과 제안된 앙상블 모형이 여러 가지 평가척도 하에서 단일 SVM 모형들보다 좋은 성능을 보임을 알 수 있었다.
In this paper, a method for improving the defect classification performance in steel plate surface has been studied, based on DWT(discrete wavelet transform) and SVM(support vector machine). Surface images of the steel plate have low contrast, uneven, and featureless, so that the contrast between defect and defect-free regions is not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. In order to improve the characteristics of these images, a synthetic images based on discrete wavelet transform are modeled. Using the synthetic images, edge-based features are extracted and also geometrical features are computed. SVM was configured in order to classify defect images using extracted features. As results of the experiment, the support vector machine based classifier showed good classification performance of 94.3%. The proposed classifier is expected to contribute to the key element of inspection process in smart factory.
Reliability analysis and prediction of next failure time is critical to sustain weapon systems, concerning scheduled maintenance, spare parts replacement and maintenance interventions, etc. Since 1981, many methodology derived from various probabilistic and statistical theories has been suggested to do that activity. Nowadays, many A.I. tools have been used to support these predictions. Support Vector Regression(SVR) is a nonlinear regression technique extended from support vector machine. SVR can fit data flexibly and it has a wide variety of applications. This paper utilizes SVM and SVR with combining time series to predict the next failure time based on historical failure data. A numerical case using failure data from the military equipment is presented to demonstrate the performance of the proposed approach. Finally, the proposed approach is proved meaningful to predict next failure point and to estimate instantaneous failure rate and MTBF.
In this paper, we develop a real time lip-synch system that activates 2-D avatar's lip motion in synch with an incoming speech utterance. To realize the 'real time' operation of the system, we contain the processing time by invoking merge and split procedures performing coarse-to-fine phoneme classification. At each stage of phoneme classification, we apply the support vector machine (SVM) to reduce the computational load while retraining the desired accuracy. The coarse-to-fine phoneme classification is accomplished via two stages of feature extraction: first, each speech frame is acoustically analyzed for 3 classes of lip opening using Mel Frequency Cepstral Coefficients (MFCC) as a feature; secondly, each frame is further refined in classification for detailed lip shape using formant information. We implemented the system with 2-D lip animation that shows the effectiveness of the proposed two-stage procedure in accomplishing a real-time lip-synch task. It was observed that the method of using phoneme merging and SVM achieved about twice faster speed in recognition than the method employing the Hidden Markov Model (HMM). A typical latency time per a single frame observed for our method was in the order of 18.22 milliseconds while an HMM method applied under identical conditions resulted about 30.67 milliseconds.
This paper presents a learning-based visual inspection method that addresses the need for an improved adaptability of a visual inspection system for parts verification in panorama sunroof assembly lines. It is essential to ensure that the many parts required (bolts and nuts, etc.) are properly installed in the PLC sunroof manufacturing process. Instead of human inspectors, a visual inspection system can automatically perform parts verification tasks to assure that parts are properly installed while rejecting any that are improperly assembled. The proposed visual inspection method is able to adapt to changing inspection tasks and environmental conditions through an efficient learning process. The proposed system consists of two major modules: learning mode and test mode. The SVM (Support Vector Machine) learning algorithm is employed to implement part learning and verification. The proposed method is very robust for changing environmental conditions, and various experimental results show the effectiveness of the proposed method.
부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지, 시계열 주파수 분석, 비선형 분석법 등이 연구되어 왔다. 이러한 방법들은 분류율를 향상시키기 위해 정확한 특징점과 많은 양의 신호를 처리해야 하기 때문에 데이터의 가공 및 연산이 복잡하며, 다양한 부정맥을 분류하는데 어려움이 있다. 본 연구에서는 AR(Auto Regressive) 모델링 기반의 특징점 추출과 SVM(Support Vector Machine)을 통한 조기수축 부정맥 분류 방법을 제안한다. 이를 위해 잡음을 제거한 ECG 신호에서 R파를 검출하고 QRS와 RR 간격의 특정 파형 구간을 모델링하였다. 이후 최적 세그먼트 길이(n1, n2), 최적 차수( p1, p2)의 4가지 AR 모델링 변수를 추출하고 SVM을 통해 Normal, PVC, PAC를 분류하였다. 연구의 타당성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 대상으로 한 R파의 평균 검출 성능은 99.77%, Normal, PVC, PAC 부정맥은 각각 99.23%, 97.28, 96.62의 평균 분류율을 나타내었다.
Communications for Statistical Applications and Methods
/
제13권3호
/
pp.765-776
/
2006
In this paper we propose an estimation method on the regression model with randomly censored observations of the training data set. The weighted least squares support vector machine regression is applied for the regression function estimation by incorporating the weights assessed upon each observation in the optimization problem. Numerical examples are given to show the performance of the proposed estimation method.
망막색소변성(RP: Retinitis Pigmentosa)이란 가장 흔한 유전성 망막질환이다. 정상적인 사회활동을 영위하던 사람들이 이 질병으로 시력이 손상되면서 좌절과 고통을 겪는다. 또한 국가적 차원에서 이들의 경제활동이 끊김에 따라 경제활동 인구 감소에 따른 손실 또한 크다고 하겠다. 이에 망막색소변성 질환에 대한 임상 예후 정보를 제공할 수 있는 연구기반이 절실히 요구되고 있다. 본 연구는 망막색소변성 데이터에 대한 패턴 분류를 통해 예후 예측이 가능함을 제안한다. 기존에는 주로 SPSS등을 활용한 통계 처리 결과가 데이터 분석에 적용되었다. 그러나 본 연구에서는 기계학습과 자동 패턴 분류를 실험하였다. SVM(Support Vector Machine)과 여러 다양한 패턴분류기들을 실험을 위해 사용하였다. 제안한 방법은 SVM 분류기에 의하여 RP 데이터가 자동적으로 분류된 결과를 바탕으로 예후 예측이 가능함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.