• Title/Summary/Keyword: SUV

Search Result 333, Processing Time 0.06 seconds

The Evaluation of the Difference of the SUV Caused by DFOV Change in PET/CT (PET/CT 검사에서 확대된 표시시야가 표준섭취계수에 미치는 영향 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2011
  • Purpose: The limited FOV(Field of View) of CT (Computed Tomography) can cause truncation artifact at external DFOV (Display Field of View) in PET/CT image. In our study, we measured the difference of SUV and compared the influence affecting to the image reconstructed with the extended DFOV. Materials and Methods: NEMA 1994 PET Phantom was filled with $^{18}F$(FDG) of 5.3 kBq/mL and placed at the center of FOV. Phantom images were acquired through emission scan. Shift the phantom's location to the external edge of DFOV and images were acquired with same method. All of acquired data through each experiment were reconstructed with same method, DFOV was applied 50 cm and 70 cm respectively. Then ROI was set up on the emission image, performed the comparative analysis SUV. In the clinical test, patient group shown truncation artifact was selected. ROI was set up at the liver of patient's image and performed the comparative analysis SUV according to the change of DFOV. Results: The pixel size was increase from 3.91 mm to 5.47 mm according to the DFOV increment in the centered location phantom study. When extended DFOV was applied, $_{max}SUV$ of ROI was decreased from 1.49 to 1.35. In case of shifted the center of phantom location study, $_{max}SUV$ was decreased from 1.30 to 1.20. The $_{max}SUV$ was 1.51 at the truncated region in the extended DFOV. The difference of the $_{max}SUV$ was 25.9% higher at the outside of the truncated region than inside. When the extended DFOV was applied, $_{max}SUV$ was decreased from 3.38 to 3.13. Conclusion: When the extended DFOV was applied, $_{max}SUV$ decreasing phenomenon can cause pixel to pixel noise by increasing of pixel size. In this reason, $_{max}SUV$ was underestimated. Therefore, We should consider the underestimation of quantitative result in the whole image plane in case of patient study applied extended DFOV protocol. Consequently, the result of the quantitative analysis may show more higher than inside at the truncated region.

  • PDF

Evaluation of the Feasibility of Applying Metabolic Target Volume in 4D RT Using PET/CT Image (4D RT에서 PET/CT Image를 이용한 Metabolic Target Volume 적용의 유용성 평가)

  • Kim, Chang-Uk;Chun, Keum-Sung;Huh, Kyung-Hoon;Kim, Yeon-Shil;Jang, Hong-Seok;Jung, Won-Gyun;Xing, Lei;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.174-182
    • /
    • 2010
  • In this study, we evaluated feasibility of applying MTV (Metabolic Target Volume) to respiratory gated radiotherapy for more accurate treatment using various SUV (Standard Uptake Value) from PET images. We compared VOI (Volume of Interest) images from 50%, 30% and 5% SUV (standard uptake volume) from PET scan of an artificial target with GTV (Gross Tumor Volume) images defined by percentage of respiratory phase from 4D-CT scan for respiratory gated radiotherapy. It is found that the difference of VOI of 30% SUV is reduced noticeably comparing with that of 50% SUV in longitudinal direction with respect to total GTV of 4D-CT image. Difference of VOI of 30% SUV from 4D-PET image defined by respiratory phase from 25% inhalation to 25% exhalation, and GTV from 4D-CT with the same phase is shown below 0.6 cm in maximum. Thus, it is better to use 4D-PET images than conventional PET images for applying MTV to gated RT. From the result that VOI of 5% SUV from 4D-PET agrees well with reference image of 4D-CT in all direction, and the recommendation from department of nuclear medicine that 30% SUV be advised for defining tumor range, it is found that using less than 30%SUV will be more accurate and practical to apply MTV for respiratory gated radiotherapy.

A Comparative Analysis of Standard Uptake Value Using the Recovery Coefficient Before and After Correcting Partial Volume Effect (부분 체적 효과에서 회복 계수를 이용한 보정 전과 후 SUV의 비교 분석)

  • Ko, Hyun-Soo;Park, Soon-Ki;Choi, Jae-Min;Kim, Jung-Sun;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Purpose: The partial volume effect occurs because of limit of the spatial resolution. It makes partial loss of intensity and causes SUV to be lower than it should actually be. So the purpose of this study is to calculate recovery coefficient for correcting PVE from phantom study and to compare before and after SUV correction applying to PET/CT examination. Materials and Methods: The flangeless Esser PET phantom consisting of four hot cylinders was used for this study. All of the hot cylinders were filled with FDG solution of 20.72 MBq per 1000 ml, and the phantom background was filled with FDG solution of different concentrations (33.30, 22.20, 16.65 MBq per 6440 ml) to yield H/B ratios of around 4:1, 6:1 and 8:1. Using the Biograph Truepoint 40(SIEMENS, Germany), we applied recovery coefficient method to 30 patients who were diagnosed with lung cancer after PET/CT exam. And then we analyzed and compared SUV before and after correcting partial volume effect. Results: The smaller the diameter of hot cylinder becomes, the more recovery coefficient decreased. When we applied recovery coefficient to clinical patients and compared SUV before and after correcting PVE, before the correction all lesions gave an average max SUV of 7.83. And after the correction, the average max SUV increases to 10.31. The differences in the max SUV between before and after correction were analyzed by paired t test. As a result, there were statistically significant differences (t=7.21, p=0.000). Conclusion: The SUV for quantification should be measured precisely to give consistent information of tumor uptake. But PVE is one of factors that causes SUV to be lower and to be underestimated. We can correct this PVE and calculate corrected SUV using the recovery coefficient from phantom study. And if we apply this correction method to clinical patients, we can finally assess and provide quantitative analysis more accurately.

  • PDF

Consideration of the Usefulness of 18F-FET Brain PET/CT in Brain Tumor Diagnosis (뇌종양진단에 있어 18F-FET Brain PET/CT의 유용성에 대한 고찰)

  • Kyu-Ho Yeon; Jae-Kwang Ryu
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • Purpose: 18F-FET, a radiopharmaceutical based on a Tyrosine amino acid derivative using the Sodium-Potassium Pump-independent Transporter (System L) for non-invasive evaluation of primary, recurrent, and metastatic brain tumors, exhibits distinct characteristics. Unlike the widely absorbed 18F-FDG in both tumor and normal brain tissues, 18F-FET demonstrates specific uptake only in tumor tissue while almost negligible uptake in normal brain tissue. This study aims to compare and evaluate the usefulness of 18F-FDG and 18F-FET Brain PET/CT quantitative analysis in brain tumor diagnosis. Materials and Methods: In 46 patients diagnosed with brain gliomas (High Grade: 34, Low Grade: 12), Brain PET/CT scans were performed at 40 minutes after 18F-FDG injection and at 20 minutes (early) and 80 minutes (delay) after 18F-FET injection. SUVmax and SUVpeak of tumor areas corresponding to MRI images were measured in each scan, and the SUVmax-to-SUVpeak ratio, an indicator of tumor prognosis, was calculated. Differences in SUVmax, SUVpeak, and SUVmax-to-SUVpeak ratio between 18F-FDG and 18F-FET early/delay scans were statistically verified using SPSS (ver.28) package program. Results: SUVmax values were 3.72±1.36 for 18F-FDG, 4.59±1.55 for 18F-FET early, and 4.12±1.36 for 18F-FET delay scans. The highest SUVmax was observed in 18F-FET early scans, particularly in HG tumors (4.85±1.44), showing a slightly more significant difference (P<0.0001). SUVpeak values were 3.33±1.13 for 18F-FDG, 3.04±1.11 for 18F-FET early, and 2.80±0.96 for 18F-FET delay scans. The highest SUVpeak was in 18F-FDG scans, while the lowest was in 18F-FET delay scans, with a more significant difference in HG tumors (P<0.001). SUVmax-to-SUVpeak ratio values were 1.11±0.09 for 18F-FDG, 1.54±0.22 for 18F-FET early, and 1.48±0.17 for 18F-FET delay scans. This ratio was higher in 18F-FET scans for both HG and LG tumors (P<0.0001), but there was no statistically significant difference between 18F-FET early and delay scans. Conclusion: This study confirms the usefulness of early and delay scans in 18F-FET Brain PET/CT examinations, particularly demonstrating the changes in objective quantitative metrics such as SUVmax, SUVpeak, and introducing the SUVmax-to-SUVpeak ratio as a new evaluation metric based on the degree of tumor malignancy. This is expected to further contributions to the quantitative analysis of Brain PET/CT images.

Image Evaluation Via $SUV_{LBM}$ for Normal Regions of VOI by Using Whole Body Images Obtained from PET/MRI and PET/CT (F-18 FDG PET/MRI와 PET/CT 전신 영상에서 VOI를 이용한 정상부위의 $SUV_{LBM}$-최대치에 의한 영상평가)

  • Park, Jeong-Kyu;Kim, Sung-Kyu;Cho, Ihn-Ho;Kong, Eun-Jung;Park, Meyong-Hwan
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.68-75
    • /
    • 2013
  • The purpose of this research is to compare and analyze $SUV_{LBM}$-maximum of normal regions using VOI (the volume of interest) in order to enhance the diagnostic level in whole body images of PET/CT and PET/MRI for 26 health check-up participants. In particular, we try to set up $SUV_{LBM}$-maximum data that can be used in synchronous evaluation for PET/CT and PET/MRI without contrast media. The evaluation of $SUV_{LBM}$-maximum for normal regions of whole body PET/CT and whole body PET/MRI shows that the image of PET/MRI differs very significantly from the reference image of PET/CT (p<0.0001). However, they exhibit high correlations in view of statistics (R>0.8). From this research, we suggest that the decision in the evaluation of $SUV_{LBM}$-maximum for PET/MRI should be made with the reduction of about 26.3%, while one should decide with the reduction of about 29.3% when the contrast media is used. It is helpful to interpret all image of PET/CT and PET/MRI using $SUV_{LBM}$-maximum for convenience and efficiency.

Research on Aggressivity of Light Truck Vehicle and SUV to Passenger Vehicle (승용차량에 대한 경트럭 및 SUV의 공격성 연구)

  • Kim, Guan-Hee;Park, In-Song
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.133-139
    • /
    • 2009
  • When two cars impact each other, it is usually known smaller vehicle's passenger likely to be more seriously injured than bigger one's. Generally it is known that SUVs and Light Truck Vehicles (LTVs) are bigger and heavier than passenger vehicles and their drive height such as bumper rail and side member, and front end stiffness are higher than those of passenger vehicles. Because of these characteristics the occupants of passenger vehicle struck by SUVs or LTVs are more likely to experience severe injury or fatal injury. To evaluate SUV and LTV's aggressivity to passenger vehicle, SUV to passenger vehicle and LTV to passenger vehicle head-on crash test have been carried out. And finally the way how to reduce incompatibility between SUV and LTV and passenger vehicles is suggested.

Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle (전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

Comparing the Change in SUVmax Over Time by the Type of Ductal Breast Carcinoma (유방암 환자 중 유관에서 발병되는 암의 종류(IDC와 DCIS)별 시간경과에 따른 SUVmax 변화에 대한 비교)

  • Hyoung, Mi-Jin;Kim, Jeong Nip;Moon, Pyeong Soo;Kim, Kil Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.140-144
    • /
    • 2014
  • Purpose: The recent surge in breast carcinoma patients is reported in a variety of statistics. Breast cancer occurs mainly from duct and lobulus: 85% is from the breast ducts. The present study is aimed to distinguish the difference in $SUV_{max}$ changing over time by identifying the type of cancers attacking from the duct. Materials and Methods: The subjects of the study are 291 female breast cancer patients who have visited the present PET/CT center from July 1, 2012 to July 23, 2013. Based on the pathological results, 248 IDC (invasive ductal carcinoma) patients and 43 DCIS (ductal carcinoma in situ) patients were selected. In the same manner as the general PET/CT scan (3.7 MBq/Kg), F-FDG was injected, followed by the primary test (Routine tests) after 1 hr, and the secondary test (Delay test) after another hr. $SUV_{max}$ was measured after setting ROI in the lesion based on the data from the two tests. Results: As the comparative result of the change in the lesion $SUV_{max}$ between the two groups, IDC group's $SUV_{max}$ showed M=7.11 and SD=5.405 in the primary test and increased M=7.11 and SD=5.405 in the secondary test (P<0.05); DCIS group's $SUV_{max}$ showed M=2.739, SD=1.229 in the primary test and increased M=2.614, SD=1.470 in the secondary test (P<0.05). Conclusion: As the comparative result of $SUV_{max}$ over time between the groups, IDC showed increased $SUV_{max}$ in the secondary test (Delay test) compared to the primary test (Routine test) (P=0.000); DCIS showed decreased $SUV_{max}$ in the secondary test (Delay test) compared to the primary test (Routine test) (P=0.039). It was confirmed through this study that the change in $SUV_{max}$ has occurred over time by the type of breast cancer (IDC or DCIS) occurring from the breast ducts. However, the onset of breast cancers (ILC, LCIS) from the lobulus was not discussed due to the lack of samples. Future research on the breast cancers from the lobulus is suggested.

  • PDF

A study on evaluation of the image with washed-out artifact after applying scatter limitation correction algorithm in PET/CT exam (PET/CT 검사에서 냉소 인공물 발생 시 산란 제한 보정 알고리즘 적용에 따른 영상 평가)

  • Ko, Hyun-Soo;Ryu, Jae-kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • Purpose In PET/CT exam, washed-out artifact could occur due to severe motion of the patient and high specific activity, it results in lowering not only qualitative reading but also quantitative analysis. Scatter limitation correction by GE is an algorism to correct washed-out artifact and recover the images in PET scan. The purpose of this study is to measure the threshold of specific activity which can recovers to original uptake values on the image shown with washed-out artifact from phantom experiment and to compare the quantitative analysis of the clinical patient's data before and after correction. Materials and Methods PET and CT images were acquired in having no misalignment(D0) and in 1, 2, 3, 4 cm distance of misalignment(D1, D2, D3, D4) respectively, with 20 steps of each specific activity from 20 to 20,000 kBq/ml on $^{68}Ge$ cylinder phantom. Also, we measured the distance of misalignment of foley catheter line between CT and PET images, the specific activity which makes washed-out artifact, $SUV_{mean}$ of muscle in artifact slice and $SUV_{max}$ of lesion in artifact slice and $SUV_{max}$ of the other lesion out of artifact slice before and after correction respectively from 34 patients who underwent $^{18}F-FDG$ Fusion Whole Body PET/CT exam. SPSS 21 was used to analyze the difference in the SUV between before and after scatter limitation correction by paired t-test. Results In phantom experiment, $SUV_{mean}$ of $^{68}Ge$ cylinder decreased as specific activity of $^{18}F$ increased. $SUV_{mean}$ more and more decreased as the distance of misalignment between CT and PET more increased. On the other hand, the effect of correction increased as the distance more increased. From phantom experiments, there was no washed-out artifact below 50 kBq/ml and $SUV_{mean}$ was same from origin. On D0 and D1, $SUV_{mean}$ recovered to origin(0.95) below 120 kBq/ml when applying scatter limitation correction. On D2 and D3, $SUV_{mean}$ recovered to origin below 100 kBq/ml. On D4, $SUV_{mean}$ recovered to origin below 80 kBq/ml. From 34 clinical patient's data, the average distance of misalignment was 2.02 cm and the average specific activity which makes washed-out artifact was 490.15 kBq/ml. The average $SUV_{mean}$ of muscles and the average $SUV_{max}$ of lesions in artifact slice before and after the correction show a significant difference according to a paired t-test respectively(t=-13.805, p=0.000)(t=-2.851, p=0.012), but the average $SUV_{max}$ of lesions out of artifact slice show a no significant difference (t=-1.173, p=0.250). Conclusion Scatter limitation correction algorism by GE PET/CT scanner helps to correct washed-out artifact from motion of a patient or high specific activity and to recover the PET images. When we read the image occurred with washed-out artifact by measuring the distance of misalignment between CT and PET image, specific activity after applying scatter limitation algorism, we can analyze the images more accurately without repeating scan.

The Arms Race on the Road: Exploring Factors of SUVs' Popularity by LDA Topic Model (도로 위의 군비경쟁: LDA 토픽모델을 활용한 SUV의 인기 요인 탐구)

  • Jeon, Seung-Bong;Goh, Taekyeong
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.239-252
    • /
    • 2020
  • By using text mining, we explore the factors responsible for an increase in SUV preference. We collected 32,679 posts related to SUVs from "Bobaedream," the largest online automobile community in South Korea, and applied the LDA topic model. While previous studies have explained the SUV boom as an individual's risk aversion strategy from crime, the result shows that the topic of 'Safety' appears to be an important factor in the SUV discourse in the context of a car accident and high-speed driving situation. To conclude, the consumption of SUVs in Korean society serves as a mean to prevent anxiety and danger to individuals when driving. We insist that decreasing social trust, caused by an increase in inequality, underlies the perception of risk on the road.