• Title/Summary/Keyword: SUBSTRATE SIZE

Search Result 1,595, Processing Time 0.041 seconds

ADHESION STRENGTH OF DIAMOND COATED WC-Co TOOLS USING MICROWAVE PLASMA CVD

  • Kiyama, Nobumichi;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.540-544
    • /
    • 1996
  • To apply the CVD diamond film to coated tools, it is necessary to make adhesion strength between diamond film and substrate stronger. So adhesion strength of diamond coated WC-Co tools using Microwave Plasma CVD and cutting test of Al-18mass%Si alloy using diamond cutting tools were studied. Diamond coating was carried out using Microwave Plasma CVD apparatus. Reaction gas was used mixture of methane and hydrogen. Substrate temperature were varied from 673K to 1173K by control of microwave output power and reaction pressure. By observation of SEM, grain size became larger and larger as substrate temperature became higher and higher. Also all deposits were covered with clear diamond crystals. XRD results, the deposits were identified to cubic diamond. An analysis using Raman spectroscopy, the deposit synthesized at lower substrate temperature (673K) showed higher quality than deposit synthesized at higher substrate temperature (1173K). As a result of scratch adhesion strength test, from 873K to 1173K adhesion strength decreased by rising of substrate temperature. The deposit synthesized at 873K showed best adhesion strength. In the cutting test of Al-18mass%Si alloy using diamond coated tools and the surface machinability of Al-Si works turned with diamond coating tools which synthesized at 873K presented uniform roughness. Cutting performance of Al-18mass%Si alloys using diamond coated WC-Co tools related to the adhesion strength.

  • PDF

Influence of Residual Oxygen on the growth of AlN Thin Films with Substrate Temperature (기판 온도 변화에 따른 AlN 박막 성장에 잔류 산소가 미치는 영향)

  • Kim, Byoung-Kyun;Lee, Eul-Tack;Kim, Eung-Kwon;Jeong, Seok-Won;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.463-467
    • /
    • 2008
  • Aluminum nitride (AlN) thin films have been deposited on Au electrodes by using reactive RF magnetron sputtering method in a gas mixture of Ar and $N_2$ at different substrate temperature. It was found that substrate temperature was varied in the range up to $400^{\circ}C$, highly c-axis oriented film can be obtained at $300^{\circ}C$ with full width at half maximum (FWHM) $3.1^{\circ}$. Increase in surface roughness from 3.8 nm to 5.9 nm found to be associated with increase in grain size, with substrate temperature; however, the AlN film fabricated at $400^{\circ}C$ exhibited a granular type of structure with non-uniform grains. The Al 2p and N 1s peak in the X-ray photoelectron spectroscopy (XPS) spectrum confirmed the formation of Al-N bonds. The XPS spectrum also indicated the presence of oxynitrides and oxides, resulting from the presence of residual oxygen in the vacuum chamber. It is concluded that the AlN film deposited at substrate temperature of $300^{\circ}C$ exhibited the most desirable properties for the application of high-frequency surface acoustic devices.

Dependences of Various Substrate Temperature on the Structural and Electrical Properties of ZnO Thin Films deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 증착한 ZnO 박막의 증착온도에 따른 구조 및 전기적 특성)

  • Oh, Su-Young;Kim, Eung-Kwon;Lee, Tae-Yong;Kang, Hyun-Il;Lee, Jong-Hwan;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.965-968
    • /
    • 2007
  • In this study we investigated the variation of the substrate temperatures using RF sputtering to identify the effect on the structure and electrical properties by c-axis orientation of ZnO thin film. ZnO thin films were prepared on Al/Si substrate. In our experimental results, ZnO thin film at $300^{\circ}C$ was well grown with (002) peak of ZnO thin film, the thin film showed the high resistivity with the value of $5.9{\times}10^7\;{\Omega}cm$ and the roughness with 27.06 nm. As increased the substrate temperatures, the grain size of ZnO thin films was increased. From these results, we could confirm the suitable substrate temperature of ZnO thin films for FBAR(film bulk acoustic resonator).

Formation of Size-controllable Ag Nanoparticles on Si Substrate by Annealing (크기 조절이 가능한 은 나노입자 형성을 위한 박막의 열처리 효과)

  • Lee, Sang Hoon;Lee, Tae Il;Moon, Kyeong-Ju;Myoung, Jae Min
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.379-384
    • /
    • 2013
  • In order to produce size-controllable Ag nanoparticles and a nanomesh-patterned Si substrate, we introduce a rapid thermal annealing(RTA) method and a metal assisted chemical etching(MCE) process. Ag nanoparticles were self-organized from a thin Ag film on a Si substrate through the RTA process. The mean diameter of the nanoparticles was modulated by changing the thickness of the Ag film. Furthermore, we controlled the surface energy of the Si substrate by changing the Ar or $H_2$ ambient gas during the RTA process, and the modified surface energy was evaluated through water contact angle test. A smaller mean diameter of Ag nanoparticles was obtained under $H_2$ gas at RTA, compared to that under Ar, from the same thickness of Ag thin film. This result was observed by SEM and summarized by statistical analysis. The mechanism of this result was determined by the surface energy change caused by the chemical reaction between the Si substrate and $H_2$. The change of the surface energy affected on uniformity in the MCE process using Ag nanoparticles as catalyst. The nanoparticles formed under ambient Ar, having high surface energy, randomly moved in the lateral direction on the substrate even though the etching solution consisting of 10 % HF and 0.12 % $H_2O_2$ was cooled down to $-20^{\circ}C$ to minimize thermal energy, which could act as the driving force of movement. On the other hand, the nanoparticles thermally treated under ambient $H_2$ had low surface energy as the surface of the Si substrate reacted with $H_2$. That's why the Ag nanoparticles could keep their pattern and vertically etch the Si substrate during MCE.

Alignment System Development for producing OLED using Fourth-Generation Substrate

  • Park, Jae-Yong;Han, Seok-Yoon;Lee, Nam-Hoon;Choi, Jeong-Og;Shin, Ho-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.873-878
    • /
    • 2008
  • Doosan Mecatec has developed alignment system for Organic Light-Emitting Diode (OLED) display production using large size substrate. In the present article, The alignment system between the substrate and the mask, which is a core technology for producing the OLED product using the fourth-generation substrate with $730{\times}920mm^2$ or more, will be described by dividing into a substrate loader, a magnet unit, a CCD camera, etc. The substrate loader is optimized through the simulation where the central portion of the substrate droops by about 1.5mm by clamping each of a long side (920mm direction) and a short side (730mm direction) thereof by 6 point and 4 point. A magnet unit using a sheet type of rubber magnet is constituted and a CCD camera model with the specifications capable of minimizing the errors between a clear image and the same image is selected. The system to which an upward evaporation technique of small molecular organic materials will be applied has been developed so that repeatability and position accuracy becomes ${\pm}1{\mu}m$ or less using an UVW type of stage. Also, the vision accuracy of the CCD camera becomes ${\pm}1{\mu}m$ or less and the align process TACT becomes 30sec. or less so that the final alignment accuracy between the substrate and the mask becomes ${\pm}3{\mu}m$ or less. In order to meet an extra-large glass substrate, an evaporation system using an extra-large AMOLED substrate has been developing through a vertical type of an alignment system.

  • PDF

Assessment of Palm Press Fibre and Sawdust-Based Substrate Formulas for Efficient Carpophore Production of Lentinus squarrosulus (Mont.) Singer

  • Osibe, Dandy Ahamefula;Chiejina, Nneka Virginia
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.467-474
    • /
    • 2015
  • Development of efficient substrate formulas to improve yield and shorten production time is one of the prerequisites for commercial cultivation of edible mushrooms. In this study, fifteen substrate formulas consisting of varying ratios of palm press fibre (PPF), mahogany sawdust (MS), Gmelina sawdust, wheat bran (WB), and fixed proportions of 1% calcium carbonate ($CaCO_3$) and 1% sucrose were assessed for efficient Lentinus squarrosulus production. Proximate compositions of mushrooms produced on the different substrate formulas were also analysed and compared. Substrate formulations containing 85% PPF, 13% WB, 1% $CaCO_3$, and 1% sucrose were found to produce the highest carpophore yield, biological efficiency and size (206.5 g/kg, 61.96%, and 7.26 g, respectively). Days to production (first harvest) tended to increase with an increase in the amount of WB in the substrate formulas, except for PPF based formulas. The addition of WB in amounts equivalent to 8~18% in substrate formulas containing 80~90% PPF resulted in a decrease in the time to first harvest by an average of 17.7 days compared to 80~90% MS with similar treatment. Nutritional content of mushrooms was affected by the different substrate formulas. Protein content was high for mushrooms produced on formulas containing PPF as the basal substrate. Thus, formulas comprising PPF, WB, $CaCO_3$, and sucrose at 85% : 13% : 1% : 1%) respectively could be explored as starter basal ingredients for efficient large scale production of L. squarrosulus.

Strain relaxed Co nanocrystals formation from thin films on sapphire substrate induced by nano-second laser irradiation

  • Seo, Ok-Gyun;Gang, Deok-Ho;Son, Jun-Gon;Choe, Jeong-Won;Ha, Seong-Su;Kim, Seon-Min;Gang, Hyeon-Cheol;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.145.2-145.2
    • /
    • 2016
  • We report the phase transformation of Co thin films on a sapphire substrate induced by laser irradiation. As grown Co films were initially strained and tetragonally distorted. With low power laser irradiation, the surface was ruptured and irregular holes were formed. As the laser power was increased, the films changed into round shape Co nanocrystals with well-defined 6-fold structure. By measuring the XRD of Co nanostructure as a function of laser energy densities, we found that the change of morphological shapes from films to nanocrystals was accompanied with decrease of the tetragonal distortion as well as strain relaxation. By measuring the size distribution of nanocrystals as a function of film thickness, the average diameter is proportional to 1.7 power of the film thickness which was consistent with the prediction of thin film hydrodynamic (TFT) dwetting theory. Finally, we fabricated the formation of size controlling nanocrystals on the sapphire substrate without strain.

  • PDF

Preparation Method of Plan-View Transmission Electron Microscopy Specimen of the Cu Thin-Film Layer on Silicon Substrate Using the Focused Ion Beam with Gas-Assisted Etch

  • Kim, Ji-Soo;Nam, Sang-Yeol;Choi, Young-Hwan;Park, Ju-Cheol
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.195-198
    • /
    • 2015
  • Gas-assisted etching (GAE) with focused ion beam (FIB) was applied to prepare plan-view specimens of Cu thin-layer on a silicon substrate for transmission electron microscopy (TEM). GAE using $XeF_2$ gas selectively etched the silicon substrate without volume loss of the Cu thin-layer. The plan-view specimen of the Cu thin film prepared by FIB milling with GAE was observed by scanning electron microscopy and $C_S$-corrected high-resolution TEM to estimate the size and microstructure of the TEM specimen. The GAE with FIB technique overcame various artifacts of conventional FIB milling technique such as bending, shrinking and non-uniform thickness of the TEM specimens. The Cu thin film was uniform in thickness and relatively larger in size despite of the thickness of <200 nm.

Study on Characteristics of Various RF Transmission Line Structures on PES Substrate for Application to Flexible MMIC

  • Yun, Young;Kim, Hong Seung;Jang, Nakwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.106-115
    • /
    • 2014
  • In this work, the coplanar waveguide is fabricated on a PES (poly[ether sulfone]) substrate for application to a flexible monolithic microwave integrated circuit, and its RF characteristics were thoroughly investigated. The quality factor of the coplanar waveguide on PES is 40.3 at a resonance frequency of 46.7 GHz. A fishbone-type transmission line (FTTL) structure is also fabricated on the PES substrate, and its RF characteristics are investigated. The wavelength of the FTTL on PES is 5.11 mm at 20 GHz, which is 55% of the conventional coplanar waveguide on PES. Using the FTTL, an impedance transformer is fabricated on PES. The size of the impedance transformer is $0.318mm{\times}0.318mm$, which is 69.2% of the size of the transformer fabricated by the conventional coplanar waveguide on PES. The impedance transformer showed return loss values better than -12.9 dB from 5 GHz to 50 GHz and an insertion loss better than -1.13 dB in the same frequency range.

Double Convective Assembly Coatings of FePt Nanoparticles to Prevent Particle Coalescence during Annealing

  • Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.156-160
    • /
    • 2011
  • FePt nanoparticles suspension was synthesized by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine. FePt nanoparticles were coated on a substrate by convective assembly from the suspension. To prevent the coalescence during the annealing of FePt nanoparticles double convective coatings were tried. First convective coating was for silica particle assembly on a silicon substrate and second one was for FePt nanoparticles on the previously coated silica layers. It was observed by scanning electron microscopy (SEM) that FePt nanoparticles were dispersed on the silica particle surface. After annealing at $700^{\circ}C$ for 30 minutes under nitrogen atmosphere, FePt nanoparticles on silica particles were maintained in a dispersed state with slight increase of particle size. On the contrary, FePt nanoparticles that were directly coated on silicon substrate showed severe particle growth after annealing due to the close-packing of nanoparticles during assembly. The size variation during annealing was also verified by X-ray diffractometer (XRD). It was suggested that pre-coating, which offered solvent flux oppose to the capillary force between FePt nanoparticles, was an effective method to prevent coalescence of nano-sized particles under high temperature annealing.