• Title/Summary/Keyword: STORM

Search Result 1,703, Processing Time 0.033 seconds

A Study on the Preparation of Contents for Promoting the Establishment of a Disaster Safety Village in Rural Areas (농촌지역 재난안전마을 만들기 활성화를 위한 컨텐츠 마련에 관한 연구)

  • Koo, Wonhoi;Bae, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • Purpose: The purpose of this study is to promote the disaster safety village establishment project that fits the characteristics of rural areas by investigating and analyzing the operation cases of contents with regard to disaster safety villages in Korea and Japan. Method: The contents of project related to disaster safety villages in Korea and Japan were classified into resident participation contents, structured contents and unstructured contents, for examining the characteristics of such contents through investigation and analysis, and the contents (draft) of disaster safety village that fitted the characteristics of rural areas were presented. Result: The contents of resident participation include basic safety education, CPR education, life experience training of evacuation shelter, evacuation training, concurrent training of farming activity and disaster activity and creating a village safety map in connection with competent authorities. The enactment of an act and an ordinance for the establishment of disaster safety village, expert dispatch system, storm and flood insurance system and funding system to raise the fund for establishing a village were presented as unstructured contents. In addition, the production of self supporting evacuation shelter, wireless evacuation announcement system, disaster prevention system for a river, emergency evacuation sign, village safety map sign and the establishment of disaster prevention park were presented as structured contents. Conclusion: The unstructured contents are the establishment of foundation for preparing laws and institutions and the structured contents should be installed by utilizing eco-friendly methods in consideration of the environments of rural areas along with securing the safety. Moreover, resident participation should utilize the contents by considering various items such as age, characteristics and environments of residents in rural villages.

A Study on the Analysis of Information Element of COP-Based Situation Panel for Efficient Disaster Management in the Situation Room (상황실의 효율적인 재난관리를 위한 COP기반 상황판 정보요소 분석에 관한 연구: 풍수해를 중심으로)

  • Cho, Jung-Yun;Song, Ju-Il;Jang, Cho-Rok;Jang, Moon-Yup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.393-401
    • /
    • 2021
  • This study derives essential information elements that should be shared in the situation board by utilizing the concept of common operating picture (COP). The COP's concept and actual overseas cases were confirmed, and COP information elements that should be considered for disaster situations were redefined. The COP disaster response information elements were derived by analyzing the standard manual for disaster response and daily situation reports issued in Korea. The information elements were divided into four stages (①Report reception and recognition stages, ②Situation propagation and reporting stages, ③Emergency equipment operation stages, ④Recovery and recovery stages), centered on storm and flood damage. Further analysis of the detailed information elements was conducted to derive the information elements that must be shared in the context board. The information is shared along with spatial and geographical characteristics due to the characteristics of the COP, providing complex information to decisionmakers and officials, enabling diverse access to disaster situations. Furthermore, it is expected that disaster response will be more efficient by sharing the information in common.

A Substorm Injection Event and the Radiation Belt Structure Observed by Space Radiation Detectors onboard Next Generation Small Satellite-1 (NEXTSat-1)

  • Yoo, Ji-Hyeon;Lee, Dae-Young;Kim, Eojin;Seo, Hoonkyu;Ryu, Kwangsun;Kim, Kyung-Chan;Min, Kyoungwook;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Kang, Kyung-In;Lee, Seunguk;Park, Jaeheung;Shin, Goo-Hwan;Park, SungOg
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.

Development of flow measurement method using drones in flood season (I) - aerial photogrammetry technique (드론을 이용한 홍수기 유량측정방법 개발(I) - 항공사진측량 기법 적용)

  • Lee, Tae Hee;Lim, Hyeokjin;Yun, Seong Hak;Kang, Jong Wan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1049-1057
    • /
    • 2020
  • This study aimed to develop a flow measurement method using drone in flood season. Measuring flow in all branches is difficult to conduct annually due to budget and labor limitation, safety and river works. Especially when heavy rain like storm comes, changes in stage-discharge relationship should be reviewed; however, it is usually impeded by the aforementioned issues. To solve the problem, it developed a simple measuring method with a minimum of labor and time. A numeric map and numeric orthophoto coordinate of South Korea are mostly based on Transverse Mercator Projection (TM) in accordance with rectangular coordinate system and use World Geodetic Reference System 1980 (GRS80) oval figure for conversion. Applying a concept of aerial photogrammetry, it located four visible Ground Control Points (GCP) near the river at Uijeongbu-si (Singok Bridge) and Yeongdong-gun (Youngdong 2nd Bridge) station and measured the coordinates using VRS DGPS. Hovering at a same level, drones took orthophoto of water surface at an interval of 3 seconds. It defined the pictures with GRS80 TM coordinate system, a rectangular coordinate system and then conducted an orthometric correction using GCP coordinates. According to X and Y coordinate analysis, it estimated the distance between the floating positions at 3 seconds-intervals and calculated the flow through the flow area according to the flow path. This study attested applicability of the flow measurement method using drone in flood season by applying the rectangular coordinate system based on the concept of aerial photogrammetry.

Inundation Pattern Analysis of Excavation at Construction Site and Derivation of Diasaster Cause and Effect Using Fish-bone Diagram (굴착공사현장 침수양상 해석 및 어골도에 의한 침수피해 원인 및 결과 도출)

  • Yoo, Dong-Hyun;Song, Chang Geun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.84-91
    • /
    • 2021
  • In the 21st century, a number of storm and flood disasters caused by rapidly changing climate change is increasing, and the number of flood accidents at construction sites is also increasing. However, no specific reduction measures have been presented and thereby safety management to prevent flood accident need to be improved. Therefore, in this study, the inundation pattern by downpour at the excavation site was interpreted and the inundation risk quantification method was used to classify the risk magnitude. Finally, using the fish-bone diagram, we derived the major reasons of inundation accident at construction site systematically. The simulation results showed that the inundation depths of small-scale excavation sites and excavation sites exceeded 3 m due to the fluid flowing through the excavation surface. In addition, depending on the excavation site, a high velocity temporarily observed and decreased due to the storage effect, or high velocity surpassing 10 m/s continued. Since this type of flooding can pose a risk to most or all workers, if proper management measures are insufficient, fatal damage to life and property could occur. Consideration of the roots of these disasters is judged to be helpful in understanding the causes of inundation accidents that result in casualties and presenting accident reduction measures.

A study on changes in water cycle characteristics of university campus catchment: focusing on potential evapotranspiration improvement in Mt. Gwanak catchment (대학 캠퍼스 유역의 물순환 특성 변화에 관한 연구: 관악산 유역 잠재증발산량 개선을 중심으로)

  • Kim, Hyeonju;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1077-1089
    • /
    • 2022
  • With the construction of Seoul National University (SNU), the Mt. Gwanak watershed has undergone some urbanization. As with other campus catchments, data related to the water cycle is extremely limited. Therefore, this study began by collecting hydrological and meteorological data using Atmos-41, a complex meteorological observation instrument. The observation results of Atmos-41 were validated by analyzing the statistical characteristics and confidence intervals based on the monthly variability of data from the Korea Meteorological Administration. Results of the previous research were used to validate the simulated surface runoff and infiltration using the Storm Water Management Model (SWMM). The potential evapotranspiration (PET) simulated by the SWMM was rectified by comparing it to the Atmos-41 observation data. Multiple regression analysis was employed to adjust for the fluctuations in precipitation, relative humidity, and wind speed because the calculated SWMM PET tends to be underestimated during periods of low temperatures. R2 increased from 0.54 to 0.80 when compared to the Atmos-41 PET. The rate of change in the water cycle as a consequence of the SNU's construction resulted in a 15.7% increase in surface runoff, a 14.2% decrease in infiltration rate, and a 1.6% decrease in evaporation.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.

A study on the rainfall-runoff reduction efficiency on each design rainfall for the green infrastructure-baesd stormwater management (그린인프라 기반 빗물 관리를 위한 설계강우량별 강우-유출저감 효율성 분석 연구)

  • Kim, Byungsung;Kim, Jaemoon;Lee, Sangjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.613-621
    • /
    • 2022
  • Due to the global climate change, the rainfall volume and frequency on the Korean Peninsula are predicted to increase at the end of the 21st century. In addition, impervious surface areas have increased due to rapid urbanization which has caused the urban water cycle to deteriorate. Green Infrastructure (GI) researches have been conducted to improve the water cycle soundness; the efficiency of this technique has been verified through various studies. However, there are still no suitable GI design guidelines for this aspect. Therefore, the rainfall scenarios are set up for each percentile (60, 70, 80, 90) based on the volume and frequency analysis using 10-year rainfall data (Busan Meteorological Station). After determining the GI areas for each scenario, the runoff reduction characteristics are analyzed based on Storm Water Management Model (SWMM) 10-year rainfall-runoff-simulations. The total runoff reduction efficiency for each GI areas are computed to have a range of 13.1~52.1%. As a results of the quantitative analysis, the design rainfall for GI is classified into the 80~85 percentile in the study site.

Estimation of the Reach-average Velocity of Mountain Streams Using Dye Tracing (염료추적자법을 이용한 산지하천의 구간 평균 유속 추정)

  • Tae-Hyun Kim;Jeman Lee;Chulwon Lee;Sangjun Im
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.374-381
    • /
    • 2023
  • The travel time of flash floods along mountain streams is mainly governed by reach-average velocity, rather than by the point velocity of the locations of interest. Reach-average velocity is influenced by various factors such as stream geometry, streambed materials, and the hydraulic roughness of streams. In this study, the reach-average velocity in mountain streams was measured for storm periods using rhodamine dye tracing. The point cloud data obtained from a LiDAR survey was used to extract the average hydraulic roughness height, such as Ra, Rmax, and Rz. The size distribution of the streambed materials (D50, D84) was also considered in the estimation of the roughness height. The field experiments revealed that the reach-average velocities had a significant relationship with flow discharges (v = 0.5499Q0.6165 ), with an R2 value of 0.77. The root mean square error in the roughness height of the Ra-based estimation (0.45) was lower than those of the other estimations (0.47-1.04). Among the parameters for roughness height estimation, the Ra -based roughness height was the most reliable and suitable for developing the reach-average velocity equation for estimating the travel time of flood waves in mountain streams.

Simulating flood inflow to multipurposed dam on 2020.8.7.~8.8 storm with ONE model (ONE 모형에 의한 2020.8.7.~8.8. 호우의 댐 유입량 모의)

  • Noh, Jaekyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.120-120
    • /
    • 2021
  • 2020년 8월 7일부터 8월 8일까지 호우는 용담댐, 섬진강댐, 합천댐 하류 유역의 막대한 침수피해를 일으켰다. 이들 다목적 댐 유입량의 신뢰도 높은 모의는 홍수기 댐 운영 및 하류하천의 홍수 해석에 필수다. 여기서는 일 유출 모의 기반으로 개발된 ONE 모형을 10분 단위, 1시간 단위로 적용한 결과를 제시하고자 한다. 보통 홍수모의는 사상별로 실시하지만, 여기서는 1월1일부터 12월 31일까지 연속으로 모의한 결과에서 해당 홍수사상 결과를 제시하였다. 3개 다목적 댐의 홍수사상은 8월6일부터 8월 10일까지 5일간으로 설정하였다. 유역면적은 용담댐, 섬진강댐, 합천댐, 각각 930km2, 763km2, 925km2, 총강우량은 각각 490.7mm, 451.9mm, 452.4mm, 첨두유입량은 10분 단위는 각각 4,872.7m3/s, 3,533.7.0m3/s, 2,776.0m3/s, 1시간 단위는 각각 4,394.9m3/s, 3,401.8m3/s, 2,745.6m3/s, 총유입량은 각각 3억8,836만m3, 3억1,324만m3, 3억2,816만m3였다. 첨두유입량 상대오차가 0일 때의 매개변수로 모의한 결과를 제시하며, 총유입량 상대오차(Vq), R2, RMSE, NSE 등으로 평가하였다. 용담댐 결과는 10분 단위 경우 최대면적강우량 7.3mm, 첨두유입량 4,872.4m3/s, 총유입량 3억 8,138만m3, Vq 1.9%, R2 0.968, RMSE 207.347, NSE 0.978였고, 1시간의 경우 최대면적강우량 29.6mm, 첨두유입량 4394.9m3/s, 총유입량 4억157만m3, Vq -8.4%, R2 0.970, RMSE 186.962, NSE 0.982였다. 섬진강댐 결과는 10분 단위 경우 최대면적강우량 9.2mm, 첨두유입량 3,533.3m3/s, 총유입량 2억7,223만m3, Vq 18.4%, R2 0.885, RMSE 808.296, NSE 0.925였고, 1시간의 경우 최대 면적강우량 37.9mm, 첨두유입량 3401.6m3/s, 총유입량 2억7,029만m3, Vq 13.7%, R2 0.907, RMSE 285.544, NSE 0.936였다. 합천댐 결과는 10분 단위 경우 최대면적강우량 5.5mm, 첨두유입량 2,776.2m3/s, 총유입량 3억3,667만m3, Vq -2.7%, R2 0.941, RMSE 191.896, NSE 0.965였고, 1시간의 경우 최대면적강우량 17.0mm, 첨두유입량 2,746.7m3/s, 총유입량 3억1,333만m3, Vq 4.5%, R2 0.965, RMSE 140.739, NSE 0.981였다. 이상 ONE 모형으로 10분, 1시간 단위의 댐 홍수 유입량 모의결과는 높은 신뢰도를 나타냈다.

  • PDF