• Title/Summary/Keyword: STL Data

Search Result 133, Processing Time 0.024 seconds

A Study on Resin flow Analysis and Free Surface forming at Micro-stereolithography using a Dynamic Pattern Generator (동적 패턴 생성기를 이용한 마이크로 광 조형 시스템에서 수지 유동 해석 및 자유표면 형성에 관한 연구)

  • Won M.H.;Choi J.W.;Ha Y.M.;Lee S.H.;Kim H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.878-881
    • /
    • 2005
  • A Stereolithography technology is based on stacking of sliced layer from STL file that is converted from 3-dimensional CAD data. A microstereolithography technology is evolved from conventional stereolithography to fabricate microstructures. In this technology, we have to consider influence of resin flow to make refresh surface. To generate new resin surface, stage has to be moved downward deeply and upward to desired position. At this time, resin flow affects to refresh surface of resin. And resin viscosity is the key factor in simulation of resin flow. By setting optimal refresh time for resin surface, total fabrication time is reduced and there is no damage to fabricated layers. In this research, we simulate resin flow using CFD software and derive optimal stage moving time and dwelling time.

  • PDF

Performance Comparison of 3D File Formats on a Mobile Web Browser

  • Nam, Duckkyoun;Lee, Daehyeon;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.31-42
    • /
    • 2019
  • As smartphone H/W performance and mobile communication service have been enhanced, large-capacity 3D modeling files are available in smartphones. Common formats of 3D modeling files include STL (STereoLithography), OBJ (Wavefront file format specification), FBX (Filmbox), and glTF (open GL Transmission Format). Each format has different characteristics depending on the configuration and functions, and formats that are supported are varied depending on the applications. Large-size files are commonly used. The 4th generation mobile communication network secures loading of 3D modeling files and transmission of large-size geometric files in order to provide augmented reality services via smartphones. This paper explains the concepts and characteristics of major 3D file formats such as OBJ, FBX, and glTF. In addition, it compares their performance in a wired web with that in the 4th generation mobile communication network. The loading time and packet transmission in each 3D format are also measured by means of different mobile web browsers (Google Chrome and MS Edge). The experiment result shows that glTF demonstrated the most efficient performance while the loading time of OBJ was relatively excessive. Findings of this study can be utilized in selecting specific 3D file formats for rendering time reduction depending on the mobile web environments.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

Geometry and Property Database for Korean Spine Research (한국인 척추 연구를 위한 형상 / 물성 정보 구축)

  • Lee, Seung-Bock;Lee, Sang-Ho;Han, Seung-Ho;Kwak, Dai-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.488-493
    • /
    • 2011
  • The Korean spine geometry and property data for researchers were made by KISTI and Catholic Institute for Applied Anatomy. We took whole spine CT, X-Ray, BMD scan for making high resolution cross-sectional spine images using more 20 donated cadavers(60 - 80 years). Then we constructed 3-dimensional volume model using serial CT images by Mimics software. The major morphometric parameters of vertebrae were measured. Mechanical motion and property data were obtained by the same cadavers using the DEXA for BMD and the spine simulator. The Korean spine geometry and property data could be used for research and development of medical device.

Investigation of SO2 Effect on TOMS O3 Retrieval from OMI Measurement in China (OMI 위성센서를 이용한 중국 지역에서 TOMS 오존 산출에 대한 이산화황의 영향 조사 연구)

  • Choi, Wonei;Hong, Hyunkee;Kim, Daewon;Ryu, Jae-Yong;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.629-637
    • /
    • 2016
  • In this present study, we identified the $SO_2$ effect on $O_3$ retrieval from the Ozone Monitoring Instrument (OMI) measurement over Chinese Industrial region from 2005 through 2007. The Planetary boundary layer (PBL) $SO_2$ data measured by OMI sensor is used in this present study. OMI-Total Ozone Mapping Spectrometer (TOMS) total $O_3$ is compared with OMI-Differential Optical Absorption Spectrometer (DOAS) total $O_3$ in various $SO_2$ condition in PBL. The difference between OMI-TOMS and OMI-DOAS total $O_3$ (T-D) shows dependency on $SO_2$ (R (Correlation coefficient) = 0.36). Since aerosol has been reported to cause uncertainty of both OMI-TOMS and OMI-DOAS total $O_3$ retrieval, the aerosol effect on relationship between PBL $SO_2$ and T-D is investigated with changing Aerosol Optical Depth (AOD). There is negligible aerosol effect on the relationship showing similar slope ($1.83{\leq}slope{\leq}2.36$) between PBL $SO_2$ and T-D in various AOD conditions. We also found that the rate of change in T-D per 1.0 DU change in PBL, middle troposphere (TRM), and upper troposphere and stratosphere (STL) are 1.6 DU, 3.9 DU and 4.9 DU, respectively. It shows that the altitude where $SO_2$ exist can affect the value of T-D, which could be due to reduced absolute radiance sensitivity in the boundary layer at 317.5 nm which is used to retrieve OMI-TOMS ozone in boundary layer.

Comparison of reproducibility of prepared tooth impression scanning utilized with white and blue light scanners (백색광과 청색광 스캐너를 이용한 지대치 인상체 스캐닝의 반복재현성 비교)

  • Jeon, Jin-Hun;Sung, Hwan-Kyung;Min, Byung-Kuk;Hwang, Jae-Sun;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.213-218
    • /
    • 2015
  • Purpose: The purpose of this study compared of reproducibility of prepared tooth impression scanning utilized with white and blue light scanners. Methods: To evaluate reproducibility with white and blue light scanners, the impression of premolar were rotated by $10^{\circ}{\sim}20^{\circ}$ and scanned. These data were compared with the first 3-D data (STL file), and the error sizes were measured (n=5). Independent t test was used to evaluation the reproducibility of impression of premolar with white versus blue light scanners through discrepancies of mean, RMS (${\alpha}=0.05$). Results: Discrepancies of mean with regard to reproducibility were $11.2{\mu}m$, $5.8{\mu}m$, respectively, with white and blue light scanners (p<0.047). And discrepancies of RMS with regard to reproducibility were $33.4{\mu}m$, $18.8{\mu}m$, respectively, with white and blue light scanners (p<0.045). Conclusion: Our results indicate a good reproducibility of prepared tooth impression digitized with blue light scanner more than that with white light scanner.

Effect of posterior span length on the trueness and precision of 3 intraoral digital scanners: A comparative 3-dimensional in vitro study

  • Fattouh, Mohamed;Kenawi, Laila Mohamed Mohamed;Fattouh, Hesham
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • Purpose: This in vitro study measured and compared 3 intraoral scanners' accuracy (trueness and precision) with different span lengths. Materials and Methods: Three master casts were prepared to simulate 3 different span lengths (fixed partial dentures with 3, 4, and 5 units). Each master cast was scanned once with an E3 lab scanner and 10 times with each of the 3 intraoral scanners (Trios 3, Planmeca Emerald, and Primescan AC). Data were stored as Standard Tessellation Language (STL) files. The differences between measurements were compared 3-dimensionally using metrology software. Data were analyzed using 1-way analysis of variance with post hoc analysis by the Tukey honest significant difference test for trueness and precision. Statistical significance was set at P<0.05. Results: A statistically significant difference was found between the 3 intraoral scanners in trueness and precision (P<0.05). Primescan AC showed the lowest trueness and precision values(36.8 ㎛ and 42.0 ㎛;(39.4 ㎛ and 51.2 ㎛; and 54.9 ㎛ and 52.7 ㎛) followed by Trios 3 (38.9 ㎛ and 53.5 ㎛; 49.9 ㎛ and 59.1 ㎛; and 58.1 ㎛ and 64.5 ㎛) and Planmeca Emerald (60.4 ㎛ and 63.6 ㎛; 61.3 ㎛ and 69.0 ㎛; and 70.8 ㎛ and 74.3 ㎛) for the 3-unit, 4-unit, and 5-unit fixed partial dentures, respectively. Conclusion: Primescan AC had the best trueness and precision, followed by Trios 3 and Planmeca Emerald. Increasing span length reduced the trueness and precession of the 3 scanners; however, their values were within the accepted successful ranges.

Sex Determination Using a Discriminant Analysis of Maxillary Sinuses and Three-Dimensional Technology

  • Jeong-Hyun Lee;Hee-Jeung Jee;Eun-Seo Park;Seok-Ho Kim;Sung-Suk Bae
    • Journal of dental hygiene science
    • /
    • v.22 no.4
    • /
    • pp.249-255
    • /
    • 2022
  • Background: Sexual dimorphism is important for sex determination in the field of forensics. However, sexual dimorphism is commonly assessed using cone beam computed tomography (CBCT) rather than three-dimensional (3D) modeling software; therefore, studies using a more accurate measurement approach are necessary. This study assessed the sexual dimorphism of the MS using a 3D modeling program to obtain information that could contribute to the fields of surgery and forensics. Methods: The CBCT data of 60 patients (age, 20~29 y; 30 males and 30 females) admitted to the Department of Orthodontics at the Dankook University School of Dentistry were provided in Digital Imaging and Communications in Medicine (DICOM) format. The left MS and right MS were modeled based on the DICOM files using the Mimics (version 22; Materialise, Leuven, Belgium) 3D program and converted to stereolithography (STL) files used to measure the width, length, and height of the MS, infraorbital foramen (IOF), right MS, and left MS. The average of three repeated measurements was calculated, and a reliability test was performed to ensure data reliability (Cronbach's α=0.618). A canonical discriminant analysis was performed using a standard approach (left: Box's M=0.096; right: Box's M=0.115). Results: Males had greater values for all parameters (MS width, MS length, MS height, IOF, right MS, left MS) than females. The discriminant analysis identified six independent variables (MS width, MS height, MS length, IOF, right MS, left MS) that could identify sex. The left MS and right MS correctly identified the sex of 81.7% and 71.7% of the patients, respectively, with the left MS having higher accuracy. Conclusion: This study confirmed that, for Korean individuals, the left MS has a better ability to identify sex than the right MS. These results may contribute to sex identification in the fields of surgery and forensics.

ACCURACY TESTS OF 3D RAPID PROTOTYPING (RP) MEDICAL MODELS: ITS POTENTIAL AND CLINICAL APPLICATIONS (Rapid Prototyping으로 제작한 3D Medical Model의 오차 측정에 관한 연구 (임상 적용 가능성 및 사례))

  • Choi, Jin-Young;Choi, Jung-Ho;Kim, Nam-Kuk;Lee, Jong-Ki;Kim, Myeng-Ki;Kim, Myung-Jin;Kim, Yeong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.295-303
    • /
    • 1999
  • Presented in this paper are the experimental results that measure rapid prototyping (RP) errors in 3D medical models. We identified various factors that can cause dimensional errors when producing RP models, specifically in maxillofacial areas. For the experiment, we used a human dry skull. A number of linear measurements based on landmarks were first obtained on the skull. This was followed by CT scanning, 3D model reconstruction, and RP model fabrication. The landmarks were measured again on both the reconstructed models and the physical RP models, and these were compared with those on dry skull. We focused on major sources of errors, such as CT scanning, conversion from CT data to STL models, and RP model fabrication. The results show that the overall error from skull to RP is $0.64{\times}0.36mm(0.71{\times}0.66%)$ in absolute value. This indicates that the RP technology can be acceptable in the real clinical applications. A clinical case that has applied RP models successfully for treatment planning and surgical rehearsal is presented. Although the use of RP models is rare in the medical area yet, we believe RP is promising in that it has a great potential in developing new tools which can aid diagnosis, treatment planning, surgical rehearsal, education, and so on.

  • PDF

A study on the machining accuracy of dental digital method focusing on dental inlay

  • Bae, Eun-Jeong;Jeong, Il-Do;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • PURPOSE. The purpose of this study was to compare the cutting method and the lamination method to investigate whether the CAD data of the proposed inlay shape are machined correctly. MATERIALS AND METHODS. The Mesial-Occlusal shape of the inlay was modeled by changing the stereolithography (STL). Each group used SLS (metal powder) or SLA (photocurable resin) in the additive method, and wax or zirconia in the subtractive method (n=10 per group, total n=40). Three-dimensional (3D) analysis program (Geomagic Control X inspection software; 3D systems) was used for the alignment and analysis. The root mean square (RMS) in the 2D plane state was measured within $50{\mu}m$ radius of eight comparison measuring points (CMP). Differences were analyzed using one-way analysis of variance and post-hoc Tukey's test were used (${\alpha}=.05$). RESULTS. There was a significant difference in RMS only in SLA and SLS of 2D section (P<.05). In CMP mean, CMP 4 ($-5.3{\pm}46.7{\mu}m$) had a value closest to 0, while CMP 6 ($20.1{\pm}42.4{\mu}m$) and CMP 1 ($-89.2{\pm}61.4{\mu}m$) had the greatest positive value and the greatest negative value, respectively. CONCLUSION. Since the errors obtained from the study do not exceed the clinically acceptable values, the lamination method and the cutting method can be used clinically.