• Title/Summary/Keyword: STATic synchronous COMpensator

Search Result 134, Processing Time 0.024 seconds

Design of Voltage Unbalance Compensator in Cascaded H-bridge Multilevel STATCOM with Unbalanced Load (불평형 부하를 가지는 Cascaded H-bridge Multilevel STATCOM에서 전압불평형 보상기의 설계)

  • Kim, Tae-Hyeong;Kwon, Byung-Ki;Jung, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.128-129
    • /
    • 2013
  • 본 논문에서는 전기로 부하에서 발생하는 무효전력 성분과 역상분 전류를 보상하기 위한 STATCOM(STATic synchronous COMpensator)을 Cascaded Multilevel Converter(CMC)로 구성하는 경우 역상분 전류 보상시에 발생하는 직류전압의 불평형을 보상하기 위한 방법을 제안하고, 이를 시뮬레이터를 통해 검증하였다.

  • PDF

Installation of 80MVA UPFC(Unified Power Flow Controller) for improving voltage stability and reducing heavy load in KEPCO power systems (한전계통의 전압안정도 향상 및 과부하 해소를 위한 80MVA UPFC(Unified Power Flow Controller) 설치)

  • Oh, Kwan-Il;Chang, Byung-Hoon;Jeon, Young-Soo;Park, Sang-Tae;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.262-265
    • /
    • 2001
  • 최근 전력계통의 과부하, 전압안정도 등의 문제에 대한 해결책으로 FACTS (Flexible AC Transmission Systems)가 대두되고 있다. FACTS 설비에는 TCSC (Thyristor-Controlled Series Capacitor), SSSC (Static Synchronous Series Capacitor)와 같은 직렬 기기와 SVC(Static Var Compensator), STATCOM(STATic COMpensator) 와 같은 병렬기기 그리고, 본 논문에서 다루는 UPFC와 같은 직 병렬기기로 나누어진다. UPFC는 SSSC와 STATCOM을 결합한 형태로 유 무효전력을 동시에 보상할 수 있는 FACTS 기기이다. 본 논문에서는 한전 계통의 전압안정도 향상과 과부하 해소를 위해 강진S/S에 설치예정인 80MVA UPFC의 하드웨어 특성과 주변계통의 특성을 소개하고, UPFC와 한전 계통의 연계방안과 시험방안을 설명한다.

  • PDF

Algorithm of reactive power injection on Distributed Static Series Compensator (송전 전력 제어를 위한 분산 정지형 직렬 보상기의 무효전력 주입 기법)

  • Yoon, Hanjong;Lee, Taeyoung;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.214-215
    • /
    • 2017
  • Distributed Flexible AC Transmission System(D-FACTS) was proposed as a solution for weakness of FACTS device s. The D-FACTS device DSSC(Distributed Static Series Co mpensator) can provide controllable reactance compensation in transmission line such as SSSC(Static Synchronous Series Compensator). This paper introduce the algorithm of reactive power injection on DSSC and propose the method of current balancing by reactive power injection. The proposed algorithm has been verified with simulation and experiment results.

  • PDF

New Reactive-Power Compensator using Thyristor Current-Source Inverter (싸이리스터 전류원인버터를 이용한 새로운 무효전력보상기)

  • Baek, Seung-Taek;Han, Byeong-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.219-225
    • /
    • 1999
  • This paper proposes a new reactive-power compensator composed of a thyristor current-source inverter. The compensator consists of a 6-pulse thyristor bridge, dc reactor, and a commutation circuit. The commutation circuit offers the thyristor bridge to have PWM operation with minimal switching losses. The operation of proposed system was analyzed by computer simulations with EMTP and experimental works with hardware scaled-model. The proposed system would have low cost and easy expansion of operation voltage due to using the conventional thyristors.

  • PDF

Modeling and Analysis of the KEPCO UPFC System by EMTDC/PSCAD

  • Yoon, Jong-Su;Kim, Soo-Yeol;Chang, Byung-Hoon;Lim, Seong-Joo;Choo, Jin-Boo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.148-154
    • /
    • 2003
  • This paper describes the development of KEPCO's 80MVA UPFC electromagnetic transient model and the analysis of its performance in the actual Korean power system. KEPCO's 80MVA UPFC is currently undergoing installation and will be ready for commercial operation from the year 2003. In order to apply a new FACTS device such as the UPFC to the actual power system, the utility needs, in advance, both load flow stability studies and transient studies. Therefore, KEPRI, the research institute of KEPCO, developed a detailed transient analysis model that is based on the actual UPFC S/W algorithm and H/W specifications. This simulation model is implemented by an EMTDC/PSCAD package. The results of the simulation show the effectiveness of UPFC operation in the KEPCO power system.

Development of UPFC GTO Thyristor Valve Test Equipment (UPFC GTO Thyristor VTE(Valve Test Equipment) 개발)

  • Kim, Soo-Yeol;Chang, Byung-Hoon;Yoon, Jong-Soo;Kim, Yong-Hak;Baek, Doo-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.391-395
    • /
    • 2008
  • KEPCO 80MVA UPFC has been operated in Gangjin Substation since May 2003. This UPFC is composed of 40MVA shunt inverter and 40MVA series inverter, and developed in technical cooperation between Hyosung and Siemens. KEPCO has tried to localize UPFC control technique after its installation and developed GTO Thyristor Valve Test Equipment for annual maintenance test. The development of this equipment make it possible to process GTO Thyristor module test automatically and manage historic data systematically, which could improve UPFC reliability.

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.

Control of DSTATCOM for Line Voltage Regulation (선로 전압 조정을 위한 DSTATCOM 제어)

  • Jung, Soo-Young;Kim, Tae-Hyun;Moon, Seung-Il
    • Journal of IKEEE
    • /
    • v.5 no.2 s.9
    • /
    • pp.146-152
    • /
    • 2001
  • Two control techniques - PI and LQR(Linear Quadratic Regulator) - of DSTATCOM (Distribution Static Synchronous Compensator) for line voltage regulation in distribution system are presented. It is shown that the voltage waveform is improved if the proposed methods are applied in IEEE 13 radial distribution system using PSCAD/EMTDC package in case of single line-to-ground fault. The three cases - without control, with PI control and with LQR control - are compared. The LQR control is shown to be best in respect of response profile and control effort required among them.

  • PDF

Dynamic Characteristic Analysis of 3-Level Half-bridge SSSC (3-레벨 반브리지로 구성된 SSSC의 동특성 분석)

  • 박상호;하요철;백승택;김희중;한병문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.317-324
    • /
    • 2001
  • This paper proposes a SSSC based on 3-level half-bridge inverters. The dynamic characteristic of the proposed SSSC was analyzed by EMTP simulation and a scaled hardware model, assuming that the SSSC is inserted in the transmission line of the one-machine-infinite-but power system. The proposed SSC has six 3-level half-bridge inverters per phase, which operates in PWM mode. The proposed SSSC generates a quasi-sinusoidal output voltage by 90 degree phase shift to the line current. The proposed SSSC does not require the coupling transformer for voltage injection, and has a flexibility in operation voltage by increasing the number of series connection.

  • PDF