• Title/Summary/Keyword: STAT3 phosphorylation

Search Result 87, Processing Time 0.027 seconds

Extracellular Signal-regulated Kinase Activation Is Required for Serine 727 Phosphorylation of STAT3 in Schwann Cells in vitro and in vivo

  • Lee, Hyun-Kyoung;Jung, Jun-Yang;Lee, Sang-Hwa;Seo, Su-Yeong;Suh, Duk-Joon;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.161-168
    • /
    • 2009
  • In the peripheral nerves, injury-induced cytokines and growth factors perform critical functions in the activation of both the MEK/ERK and JAK/STAT3 pathways. In this study, we determined that nerve injury-induced ERK activation was temporally correlated with STAT3 phosphorylation at the serine 727 residue. In cultured Schwann cells, we noted that ERK activation is required for the serine phosphorylation of STAT3 by neuropoietic cytokine interleukin-6 (IL-6). Serine phosphorylated STAT3 by IL-6 was transported into Schwann cell nuclei, thereby indicating that ERK may regulate the transcriptional activity of STAT3 via the induction of serine phosphorylation of STAT3. Neuregulin-1 (NRG) also induced the serine phosphorylation of STAT3 in an ERK-dependent fashion. In contrast with the IL-6 response, serine phosphorylated STAT3 induced by NRG was not detected in the nucleus, thus indicating the non-nuclear function of serine phosphorylated STAT3 in response to NRG. Finally, we determined that the inhibition of ERK prevented injury-induced serine phosphorylation of STAT3 in an ex-vivo explants culture of the sciatic nerves. Collectively, the results of this study show that ERK may be an upstream kinase for the serine phosphorylation of STAT3 induced by multiple stimuli in Schwann cells after peripheral nerve injury.

Actinomycin D Induces Phosphorylation of STAT3 through Down-Regulation of SOCS3 in Renal Cancer Cells (신장암 세포주에서 actinomycin D에 의한 SOCS3 발현 감소를 통한 STAT3 활성화)

  • Woo, Seon-Min;Park, Eun-Jung;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.141-145
    • /
    • 2011
  • Actinomycin D is a natural antibiotic that is used in anti-cancer chemotherapy and is known as a transcription inhibitor. Interestingly, actinomycin D induces phosphorylation of signal transducers and activators of transcription 3 (STAT3) in renal cancer Caki cells. In this study, we examined the molecular mechanism of actinomycin D-induced STAT3 phosphorylation. Treatment with actinomycin D induced phosphorylation of STAT3 (Tyr705) in a dose- and time-dependent manner. However, actinomycin D did not induce phosphorylation of STAT3 (Ser727), STAT1 (Tyr701) and STAT1 (Ser727). Moreover, actinomycin D-induced STAT3 phosphorylation was caused by decreased protein and mRNA levels of SOCS3, but not by JAK2 and SHP-1. In addition, other transcription inhibitor (5,6-dichloro-1-b-D-ribofuranosyl benzimidazole; DRB) also induced phosphorylation of STAT3 (Tyr705). Taken together, the present study demonstrates that transcriptional inhibitors (actinomycin D and DRB) induce phosphorylation of STAT3 (Tyr705) in Caki cells by down-regulation of SOCS3.

Gallic Acid Inhibits STAT3 Phosphorylation and Alleviates DDS-induced Colitis via Regulating Cytokine Production

  • Jeong, Ji Hyun;Kim, Eun Yeong;Choi, Hee Jung;Chung, Tae Wook;Kim, Keuk Jun;Kim, So Yeon;Ha, Ki Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.5
    • /
    • pp.338-346
    • /
    • 2016
  • Signal transducer and activator of transcription 3 (STAT3) is associated with various human diseases, such as cancer, auto-immune disease, and intestinal inflammation. The limited and inadequate effect of standard approaches for treating inflammatory bowel disease (IBD) has prompted to develop alternative anti-colitis agents through inhibition of STAT3. Here, we show that gallic acid (GA), a 3,4,5-trihydroxybenzoic acid, markedly reduced phosphorylation of STAT3. Among the derivatives of benzoic acids, GA showed significant inhibition on STAT3 phosphorylation. In addition, GA ameliorated the dextran sodium sulfate (DSS)-induced acute colitis as determined by the measurement of symptomatic and histological indices. The suppression of DSS-induced acute colitis by GA treatment may be related to the regulation of cytokines and growth factors. Furthermore, GA inhibited phosphorylation of STAT3 in the colon tissue of DSS-treated mice. These findings may be useful in comprehending the molecular action of GA on STAT3 phosphorylation and provide novel insights into the potential application of GA in the treatment of STAT3-related inflammatory disease, such as IBD.

Afatinib Reduces STAT6 Signaling of Host ARPE-19 Cells Infected with Toxoplasma gondii

  • Yang, Zhaoshou;Ahn, Hye-Jin;Park, Young-Hoon;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • Specific gene expressions of host cells by spontaneous STAT6 phosphorylation are major strategy for the survival of intracellular Toxoplasma gondii against parasiticidal events through STAT1 phosphorylation by infection provoked $IFN-{\gamma}$. We determined the effects of small molecules of tyrosine kinase inhibitors (TKIs) on the growth of T. gondii and on the relationship with STAT1 and STAT6 phosphorylation in ARPE-19 cells. We counted the number of T. gondii RH tachyzoites per parasitophorous vacuolar membrane (PVM) after treatment with TKIs at 12-hr intervals for 72 hr. The change of STAT6 phosphorylation was assessed via western blot and immunofluorescence assay. Among the tested TKIs, Afatinib (pan ErbB/EGFR inhibitor, $5{\mu}M$) inhibited 98.0% of the growth of T. gondii, which was comparable to pyrimethamine ($5{\mu}M$) at 96.9% and followed by Erlotinib (ErbB1/EGFR inhibitor, $20{\mu}M$) at 33.8% and Sunitinib (PDGFR or c-Kit inhibitor, $10{\mu}M$) at 21.3%. In the early stage of the infection (2, 4, and 8 hr after T. gondii challenge), Afatinib inhibited the phosphorylation of STAT6 in western blot and immunofluorescence assay. Both JAK1 and JAK3, the upper hierarchical kinases of cytokine signaling, were strongly phosphorylated at 2 hr and then disappeared entirely after 4 hr. Some TKIs, especially the EGFR inhibitors, might play an important role in the inhibition of intracellular replication of T. gondii through the inhibition of the direct phosphorylation of STAT6 by T. gondii.

ATF3 Activates Stat3 Phosphorylation through Inhibition of p53 Expression in Skin Cancer Cells

  • Hao, Zhen-Feng;Ao, Jun-Hong;Zhang, Jie;Su, You-Ming;Yang, Rong-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7439-7444
    • /
    • 2013
  • Aim: ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. Methods: In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Results: Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Conclusion: Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

3′,4′-Disenecioylkhellactone from Peucedanum japonicum Thunb. Induces Apoptosis Mediated by Inhibiting STAT3 Signaling in Human Gastric Cancer Cells (식방풍 유래 화합물 3′,4′-Disenecioylkhellactone의 위암세포에서 STAT3 활성화 억제를 매개로 하는 세포사멸 유도작용)

  • Chun, Jaemoo;Kim, Jinwoong;Kim, Yeong Shik
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.225-230
    • /
    • 2018
  • 3',4'-Disenecioylkhellactone is one of khellactone-type coumarins isolated from the roots of Peucedanum japonicum Thunb. However, its pharmacological effects are still little understood. In the present study, we investigated the inhibitory effect of 3',4'-disenecioylkhellactone on growth of gastric cancer cells. 3',4'-Disenecioylkhellactone strongly suppressed cell proliferation and induced caspase-mediated apoptosis in AGS human gastric cancer cells. Analysis of phospho-antibody arrays revealed 3',4'-disenecioylkhellactone effectively suppressed signal transducer and activator of transcription 3 (STAT3) tyrosine phosphorylation. 3',4'-Disenecioylkhellactone decreased STAT3 translocation to the nucleus and expression of STAT3 target genes. In addition, we examined the level of STAT3 activation in several gastric cancer cells and found that the inhibition of STAT3 phosphorylation by 3',4'-disenecioylkhellactone was associated with gastric cancer cell proliferation. Taken together, this study provides evidence for the first time that 3',4'-disenecioylkhellactone may be a potential therapeutic agent for the prevention or treatment of gastric cancer.

Antiproliferative effect of gold(I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

  • Kim, Nam-Hoon;Park, Hyo Jung;Oh, Mi-Kyung;Kim, In-Sook
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Signal transducer and activator of transcription 3 (STAT3) and telomerase are considered attractive targets for anticancer therapy. The in vitro anticancer activity of the gold(I) compound auranofin was investigated using MDA-MB 231 human breast cancer cells, in which STAT3 is constitutively active. In cell culture, auranofin inhibited growth in a dose-dependent manner, and N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS), markedly blocked the effect of auranofin. Incorporation of 5-bromo-2'-deoxyuridine into DNA and anchorage-independent cell growth on soft agar were decreased by auranofin treatment. STAT3 phosphorylation and telomerase activity were also attenuated in cells exposed to auranofin, but NAC pretreatment restored STAT3 phosphorylation and telomerase activity in these cells. These findings indicate that auranofin exerts in vitro antitumor effects in MDA-MB 231 cells and its activity involves inhibition of STAT3 and telomerase. Thus, auranofin shows potential as a novel anticancer drug that targets STAT3 and telomerase.

Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection

  • Park, Byoung Kwon;Kim, Dongbum;Park, Sangkyu;Maharjan, Sony;Kim, Jinsoo;Choi, Jun-Kyu;Akauliya, Madhav;Lee, Younghee;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.273-281
    • /
    • 2021
  • Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Signaling pathways that are essential for virus production have potential as therapeutic targets against COVID-19. In this study, we investigated cellular responses in two cell lines, Vero and Calu-3, upon SARS-CoV-2 infection and evaluated the effects of pathway-specific inhibitors on virus production. SARS-CoV-2 infection induced dephosphorylation of STAT1 and STAT3, high virus production, and apoptosis in Vero cells. However, in Calu-3 cells, SARS-CoV-2 infection induced long-lasting phosphorylation of STAT1 and STAT3, low virus production, and no prominent apoptosis. Inhibitors that target STAT3 phosphorylation and dimerization reduced SARS-CoV-2 production in Calu-3 cells, but not in Vero cells. These results suggest a necessity to evaluate cellular consequences upon SARS-CoV-2 infection using various model cell lines to find out more appropriate cells recapitulating relevant responses to SARS-CoV-2 infection in vitro.

3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

  • Kim, Young Eun;Choi, Hyung Chul;Lee, In-Chul;Yuk, Dong Yeon;Lee, Hyosung;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.572-580
    • /
    • 2016
  • 3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of ${\beta}$-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of $WNT/{\beta}$-catenin and STAT signaling.

Radiation Induces Phosphorylation of STAT3 in a Dose- and Time-dependent Manner

  • Gao, Ling;Li, Feng-Sheng;Chen, Xiao-Hua;Liu, Qiao-Wei;Feng, Jiang-Bin;Liu, Qing-Jie;Su, Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6161-6164
    • /
    • 2014
  • Background: We have reported the radiation could activate STAT3, which subsequently promotes the invasion of A549 cells. We here explored the dose- and time-response of STAT3 to radiation and the effect of radiation on upstream signaling molecules. Materials and Methods: A549 cells were irradiated with different doses of ${\gamma}$-rays. The expression of and nucleus translocation of p-STAT3 in A549 cells were detected by immunoblotting and immunofluorescence, respectively. The level of phosphorylated EGFR was also assessed by immunoblotting, and IL-6 expression was detected by real time PCR and ELISA. Results: Radiation promoted the phosphorylation of STAT3 at Y705 in a dose- and time-dependent manner and nuclear translocation. The level of phosphorylated EGFR in A549 cells increased after radiation. In additional, the mRNA and protein levels of IL-6 in A549 cells were also up regulated by radiation. Conclusions: STAT3 is activated by radiation in a dose-and time-dependent manner, probably due to radiation-induced activation of EGFR or secretion of IL-6 in A549 cells.