• Title/Summary/Keyword: SST effects

Search Result 144, Processing Time 0.031 seconds

PREDICTION OF AERODYNAMIC PERFORMANCE LOSS OF A WIND TURBINE BLADE SECTION DUE TO CONTAMINANT ACCUMULATION (외부 오염물 증착에 의한 풍력 터빈 날개 단면의 공력 성능 저하 예측)

  • Yang, T.H.;Choi, J.H.;Yu, D.O.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.91-97
    • /
    • 2013
  • In the present study, the effects of contaminant accumulation and surface roughness on the aerodynamic performance of wind turbine blade sections were numerically investigated by using a flow solver based on unstructured meshes. The turbulent flow over the rough surface was modeled by a modified ${\kappa}-{\omega}$ SST turbulence model. The calculations were made for the NREL S809 airfoil with varying contaminant sizes and positions at several angles of attack. It was found that as the contaminant size increases, the degradation of the airfoil performance becomes more significant, and this trend is further amplified near the stall condition. When the contaminant is located at the upper surface near the leading edge, the loss in the aerodynamic performance of the blade section becomes more critical. It was also found that the surface roughness leads to a significant reduction of lift, in addition to increased drag.

Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect (스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects (충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성)

  • Lin, Han;Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Seok-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.8-17
    • /
    • 2009
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

Validation of RANS models and Large Eddy simulation for predicting crossflow induced by mixing vanes in rod bundle

  • Wiltschko, Fabian;Qu, Wenhai;Xiong, Jinbiao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3625-3634
    • /
    • 2021
  • The crossflow is the key phenomenon in turbulent flow inside rod bundles. In order to establish confidence on application of computational fluid dynamics (CFD) to simulate the crossflow in rod bundles, three Reynolds-Averaged Navier Stokes (RANS) models i.e. the realizable k-ε model, the k-ω SST model and the Reynolds stress model (RSM), and the Large Eddy simulations (LES) with the Wall-Adapting Local Eddy-viscosity (WALE) model are validated based on the Particle Image Velocimetry (PIV) flow measurement experiment in a 5 × 5 rod bundle. In order to investigate effects of periodic boundary condition in the gap, the numerical results obtained with four inner subchannels are compared with that obtained with the whole 5 × 5 rod bundle. The results show that periodic boundaries in the gaps produce strong errors far downstream of the spacer grid, and therefore the full 5 × 5 rod bundle should be simulated. Furthermore, it can be concluded, that the realizable k-ε model can only provide reasonable results very close to the spacer grid, while the other investigated models are in good agreement with the experimental data in the whole downstream flow in the rod bundle. The LES approach shows superiority to the RANS models.

Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD

  • Sengupta, Anal Ranjan;Biswas, Agnimitra;Gupta, Rajat
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2021
  • This present paper leads to investigation of blade-fluid interactions of cambered blade H-Darrieus rotor having EN0005 airfoil blades using comprehensive Computational Fluid Dynamics (CFD) analysis to understand its performance in low wind streams. For several blade azimuthal angle positions, the effects of three different low wind speeds are studied regarding their influence on the blade-fluid interactions of the EN0005 blade rotor. In the prevailing studies by various researchers, such CFD analysis of H-Darrieus rotors are very less, hence it is needed to improve their steady-state performance in low wind velocities. Such a study is also important to obtain important performance insights of such thin cambered blade rotor in its complete rotational cycle. It has been seen that the vortex generated at the suction side of the EN0005 blade rolls back to its leading edge due to the camber of the blade and thus a peak velocity occurs near to the nose position of this blade at its leading edge, which leads to peak performance of this rotor. Again, in the returning phase of the blade, a secondary recirculating vortex is generated that acts on the pressure side of EN0005 blade rotor that increases the performance of this cambered EN0005 blade rotor in its downstream position as well. Here, the aerodynamic performances have been compared considering Standard k-ε and SST k-ω models to check the better suited turbulence model for the cambered EN0005 blade H-Darrieus rotor in low tip speed ratios.

Analyses of International Standard Problem ISP-47 TOSQAN experiment with containmentFOAM

  • Myeong-Seon Chae;Stephan Kelm;Domenico Paladino
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.611-623
    • /
    • 2024
  • The ISP-47 TOSQAN experiment was analyzed with containmentFOAM which is an open-source CFD code based on OpenFOAM. The containment phenomena taking place during the experiment are gas mixing, stratification and wall condensation in a mixture composed of steam and non-condensable gas. The k-ω SST turbulence model was adopted with buoyancy turbulence models. The wall condensation model used is based on the diffusion layer approach. We have simulated the full TOSQAN experiment which had a duration 20000 s. Sensitivity studies were conducted for the buoyancy turbulence models with SGDH and GGDH and there were not significant differences. All the main features of the experiments namely pressure history, temperature, velocity and gas species evolution were well predicted by containemntFOAM. The simulation results confirmed the formation of two large flow stream circulations and a mixing zone resulting by the combined effects of the condensation flow and natural convection flow. It was found that the natural convection in lower region of the vessel devotes to maintain two large circulations and to be varied the height of the mixing zone as result of sensitivity analysis of non-condensing wall temperature. The computational results obtained with the 2D mesh grid approach were comparable to the experimental results.

Effects of 4-week PNF Exercise Program on Activity, Posture, and Muscle Strength in a Patient with Abdominalis Weakness after Cesarean Section: A Single-Subject Study

  • Beom-Ryong Kim;Tae-Woo Kang;Seo-Yoon Park
    • The Journal of Korean Physical Therapy
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Purpose: The purpose of this study was to determine the effect of proprioceptive neuromuscular facilitation (PNF) abdominal muscle strengthening exercise on the activity, posture, and body function of clients with abdominal muscle weakness after cesarean section. Methods: PNF abdominal muscle strengthening exercise was applied to one patient with abdominal muscle weakness after cesarean section. PNF abdominal muscle strengthening exercise was applied five times a week for four weeks. The 5-time supine-to-long sitting test (5-TSLST) and supine-to-stand test (SST) were used to measure activity, and the pelvis tilt angle test (PTAT) and anterior head translation test (AHTT) were used to measure posture. Body function was assessed using the transverse abdominis muscle strength test (TAMST), the internal oblique and external oblique muscle strength test (IOEOMST), and the rectus abdominis muscle strength test (RAMST). Results: Activity, posture, and body function were improved post-intervention. Conclusion: The study verified that PNF abdominal muscle strengthening exercises are effective when applied to patients with abdominal muscle weakness after cesarean section. The findings of this study provide useful data for future interventions in patients with abdominal muscle weakness after cesarean section.

A Numerical Study on Heat Transfer and Flow Characteristics of a Finned Downhole Coaxial Heat Exchanger (외부유로 내벽에 설치된 핀 형상에 따른 이중관 열교환기의 열전달 및 유동에 대한 수치해석적 연구)

  • Park, Chun Dong;Lee, Dong Hyun;Park, Byung-Sik;Choi, Jaejoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST $k-{\omega}$ turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, $S_f$, 0.3.

Effects of Flow Acceleration on Drag Force and Wake Field of 2D Circular Cylinder (유입 유동의 가속도가 2D 원형실린더의 항력 및 후류에 미치는 영향)

  • Son, Hyun A;Lee, Sungsu;Cho, Seong Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.507-514
    • /
    • 2019
  • Computational studies of accelerating flow around 2D Circular Cylinder was performed to investigate characteristics of wake field and drag forces. Previous studies had revealed that drag on the cylindrical body in accelerating flow is much greater than that in the flow with constant velocity; however, the underlying physics on the drag increase has not been clearly investigated. In order to investigate the drag increase and its relationship with wake development, this study employed a finite-volume based CFD code, Fluent 13.0 with k-ω SST model for turbulence effects. Inflows are modeled with varied accelerations from 0.4905 to 9.81m/s2. The drag computed in the present study is in good agreement with previous studies, and clearly shows the increase compared to the drag on the body in the flow with constant velocity. The results also show that drag crisis observed at high Reynolds number in the case of the flow with constant velocity is also found in the case of accelerating flow. The analysis for wake and recirculation length shows that conventional vortex shedding does not occur even at high Reynolds number and the drag increase is larger at higher acceleration.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.