• Title/Summary/Keyword: SSSC (static synchronous series compensator)

Search Result 35, Processing Time 0.027 seconds

Optimal Particle Swarm Based Placement and Sizing of Static Synchronous Series Compensator to Maximize Social Welfare

  • Hajforoosh, Somayeh;Nabavi, Seyed M.H.;Masoum, Mohammad A.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.501-512
    • /
    • 2012
  • Social welfare maximization in a double-sided auction market is performed by implementing an aggregation-based particle swarm optimization (CAPSO) algorithm for optimal placement and sizing of one Static Synchronous Series Compensator (SSSC) device. Dallied simulation results (without/with line flow constraints and without/with SSSC) are generated to demonstrate the impact of SSSC on the congestion levels of the modified IEEE 14-bus test system. The proposed CAPSO algorithm employs conventional quadratic smooth and augmented quadratic nonsmooth generator cost curves with sine components to improve the accurate of the model by incorporating the valve loading effects. CAPSO also employs quadratic smooth consumer benefit functions. The proposed approach relies on particle swarm optimization to capture the near-optimal GenCos and DisCos, as well as the location and rating of SSSC while the Newton based load flow solution minimizes the mismatch equations. Simulation results of the proposed CAPSO algorithm are compared to solutions obtained by sequential quadratic programming (SQP) and a recently implemented Fuzzy based genetic algorithm (Fuzzy-GA). The main contributions are inclusion of customer benefit in the congestion management objective function, consideration of nonsmooth generator characteristics and the utilization of a coordinated aggregation-based PSO for locating/sizing of SSSC.

Dynamic Characteristic Analysis of SSSC based on Multi-bridge PWM Inverter

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.718-722
    • /
    • 2001
  • This paper proposes an SSSC based on multi-bridge inverters in PWM scheme. The proposed system consists of 6 H-bridge inverter modules per phase. The dynamic characteristic of proposed system was analyzed by simulation with EMTP codes, assuming that the SSSC is inserted in the 154-kV transmission line of one-machine-infinite-bus power system. The feasibility of hardware implementation was verified through experimental works with a scaled-model. The proposed system can be directly inserted in the transmission line without coupling transformers, and has flexibility in expanding the operation voltage by increasing the number of H-bridges.

  • PDF

Dynamic Characteristic Analysis of Multi-bridge SSSC (다중브리지로 구성된 SSSC의 동특성 분석)

  • 한병문;박덕희;백승택;김희중;소용철;김현우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.229-237
    • /
    • 2000
  • 본 논문에서는 멀티브리지 인버터로 구성된 SSSC를 제안하였다. SSSC의 동적특성을 분석하기 위해서 1기 무한모선 전력계통에 SSSC를 연결한 것을 가정하고 EMTP 시뮬레이션을 수행하였고, 축소모형 실험으로 그 특성을 확인하였다. 다중브리지 SSSC는 한 상당 6개의 단상 풀브리지 인버터로 구성되었고, 13-레벨 출력전압을 얻을 수 있다. 다중브리지 SSSC는 전압 주입을 위한 연계 변압기가 필요하기 않고, 전력계통에서 요구되는 동작전압에 따라 브리지 수를 가감하여 용이하게 구성할 수 있다.

  • PDF

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

Development of SSSC Power Flow Model and its Implementation into Continuation Power Flow Algorithm (전력조류계산을 위한 SSSC모델의 개발과 연속조류계산 알고리듬에의 적용)

  • Kim, Seul-Ki;Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1158-1160
    • /
    • 1999
  • This paper proposes a SSSC(Static Synchronous Series Compensator) power flow model to be incorporated into power flow calculation for the steady state analysis of the power system. SSSC provides controllable compensating voltage, which is in quadrature with the line current, over an capacitive and an inductive range, independently of the magnitude of the line current. This SSSC model is obtained from the injection model for series connected VSC(Voltage Source Converter) by adding a constraint that the injected voltage should be in quadrature with the line current. In this paper the static model is implemented into the continuation power-flow (CPF) program. It is shown that SSSC has its intrinsic superiority over TCSC in controllable power flow range.

  • PDF

Installation of 80MVA UPFC(Unified Power Flow Controller) for improving voltage stability and reducing heavy load in KEPCO power systems (한전계통의 전압안정도 향상 및 과부하 해소를 위한 80MVA UPFC(Unified Power Flow Controller) 설치)

  • Oh, Kwan-Il;Chang, Byung-Hoon;Jeon, Young-Soo;Park, Sang-Tae;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.262-265
    • /
    • 2001
  • 최근 전력계통의 과부하, 전압안정도 등의 문제에 대한 해결책으로 FACTS (Flexible AC Transmission Systems)가 대두되고 있다. FACTS 설비에는 TCSC (Thyristor-Controlled Series Capacitor), SSSC (Static Synchronous Series Capacitor)와 같은 직렬 기기와 SVC(Static Var Compensator), STATCOM(STATic COMpensator) 와 같은 병렬기기 그리고, 본 논문에서 다루는 UPFC와 같은 직 병렬기기로 나누어진다. UPFC는 SSSC와 STATCOM을 결합한 형태로 유 무효전력을 동시에 보상할 수 있는 FACTS 기기이다. 본 논문에서는 한전 계통의 전압안정도 향상과 과부하 해소를 위해 강진S/S에 설치예정인 80MVA UPFC의 하드웨어 특성과 주변계통의 특성을 소개하고, UPFC와 한전 계통의 연계방안과 시험방안을 설명한다.

  • PDF

New Performance Analysis of SSSC with EMPT Simulation and Scaled-model Experiment (EMTP 시뮬레이션과 축소모형 실험에 의한 SSSC의 성능 해석)

  • Kang, Jung-Gu;Han, Byung-Moon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.524-530
    • /
    • 1999
  • This paper describes performance analysis techniques for SSSC using computer simulations with EMPT and experiments with a hardware scaled-model. A switching-level simulation model with EMTP was developed for the SSSC connected in series with the transmission line. The increase of transmission capability and dynamic performance was analyzed with the simulation model. The simulation results were reverified by experimental works with a hardware scaled-model. The developed analysis techniques can be used for designing and evaluating actual system of SSSC.

  • PDF

Experimental Operation Analysis of Unified Power Flow Controller with Cascaded H-Bridge Modules (다계 H-브리지 모듈로 구성된 UPFC(Unified Power flow Compensator)의 실험적 동작분석)

  • Baek Seung-Tak;Han Byung-Moon;Choo Jin-Boo;Chang Byung-Hoon;Yoon Jong-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.422-430
    • /
    • 2005
  • This paper describes experimental analysis of UPFC, which is composed of cascaded H-bridge modules and single-phase multi-winding transformers for isolation. The operational characteristic was analyzed through experimental works with a scaled model, and simulation results with PSCAD/EMTDC. The UPFC proposed in this paper can be directly connected to the transmission line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual WFC system applicable for the transmission system.

Enhancement of Interface Flow Limit using Static Synchronous Series Compensator(SSSC) (SSSC 투입에 따른 연계선로의 송전운용한계 개선)

  • Kim, Seul-Ki;Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Sae-Hyuk;Chang, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.28-30
    • /
    • 2000
  • This paper introduces a power flow model of SSSC for voltage stability study. The SSSC model is obtained from the injection model of voltage source inverter by adding the condition that SSSC injection voltage is in quadrature with current of SSSC-installed branch. This model is incorporated into modified CPF algorithm to study effects of SSSC on the security-constrained interface flow limit. Determination of interface flow limit is simply briefed. In case study a 771-bus real system is used to show that SSSC can improve interface flow limit in terms of voltage stability.

  • PDF

Sensitivity-Based Method for the Effective Location of SSSC

  • Eghtedarpour, Navid;Seifi, Ali Reza
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • Congestion management is one of the most challenging aspects in the recently deregulated electricity markets. FACTS devices have been shown to be an efficient alternative to control the flow of power in lines, resulting in increased loadability, lower system loss and a reduced cost of production. In this paper, the application of a static series synchronous compensator (SSSC) for the purpose of congestion management of power systems has been studied. A sensitivity-based analysis method is utilized for effective determination of the SSSC location in an electricity market. The method is topology based and it is independent of the system operation point. A power injection p-model is developed for the SSSC in this study. Numerical results based on the modified IEEE 14 bus system with/without the SSSC demonstrate the feasibility as well as the effectiveness of the SSSC for congestion management in a network. The results obtained when using the SSSC to improve system transfer capability and congestion management is encouraging.