Current global textiles and fashion industries have gradually shifted focus to high value-added, high sensibility, and multi-functional products based on new human-friendliness and sustainable growth technologies. Textile design CAD systems have been developed in conjunction with computer hardware and software sector advances. This study compares the patterns or images of actual woven fabrics and virtual fabrics prepared with a textile design CAD system. In this study, several weave structures (such as fancy yarn weave and patterns) were prepared with a shuttle loom. The woven textile images were taken using a CCD camera. The same weave structure data and yarn data were fed into a textile design CAD system in order to simulate fabric images as similarly as possible. Similarity Index analysis methods allowed for an analysis of the index between the actual fabric specimen and the simulated image of the corresponding fabric. The results showed that repeated small pattern weaves provide superior similarity index values than those of a fancy yarn weave that indicate some irregularities due to fancy yarn attributes. A Complex Wavelet Structural Similarity(CW-SSIM) index resulted in a better index than other methods such as Multi-Scale(MS) SSIM, and Feature Similarity(FS) SSIM, across fabric specimen images. A correlation analysis of the similarity index based on an image analysis and a similarity evaluation by panel members was also implemented.
본 논문에서는 PSNR 을 높이도록 최적화된 HEVC 의 율-왜곡 최적화(RDO)를 MS-SSIM 를 높이도록 하여 RDO 를 수행 하도록 한다. 구현 방법으로는 MS-SSIM 도출 방법과 비슷하도록 원본과 4 단계의 저역 통과 필터(LPF)를 통과한 결과에 대한 DCT(Discrete Cosine Transform) 를 수행하고 그 AC 계수의 비율로 lagrange multiplier(${\lambda}$)를 수정하는 방식이다. AC 계수 비율과 MS-SSIM 에서 도출 된 가중치, LPF 특성 등에 따라 새롭게 각 스케일의 가중치를 결정하여 최종적으로 ${\lambda}$ 가중치를 결정하여 그 결과를 바탕으로 RDO 를 수행한다. 시뮬레이션을 통해 제안의 방법과 HEVC reference software 의 BD-rate 계산 결과 7%의 PNSR, -13.2%의 MS-SSIM 를 얻을 수 있었고 이에 따라 주관적 화질을 개선했다고 할 수 있다.
본 논문에서는 인지 화질을 고려할 수 있는 측정 방법인 structural similarity (SSIM)기반의 백라이트 디밍에서 높은 계산량을 저감할 수 있는 무작위 화소 샘플링 기법을 제안한다. 제안한 방법에서는 우선 전체 프레임에서 미리 정의된 개수만큼의 화소를 무작위로 선택한 후 이를 블록 형태로 결합한다. 이 후 해당 블록에서 SSIM 계산에 필요한 변수들을 추정하기 때문에 한 프레임을 사용하는 기존 방법 대비 계산 시간을 큰 폭으로 줄일 수 있다. 실험 결과에서 기존 방법과 비교했을 때 제안한 방법은 평균 SSIM은 거의 유지하면서도 평균 파워 소모와 평균 계산 시간을 각각 38.1766 %, 99.5828 % 까지 줄일 수 있었다.
Munshi, Amani;Alshehri, Asma;Alharbi, Bayan;AlGhamdi, Eman;Banajjar, Esraa;Albogami, Meznah;Alshanbari, Hanan S.
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.275-280
/
2021
With the development of communication networks, the processes of exchanging and transmitting information rapidly developed. As millions of images are sent via social media every day, also wireless sensor networks are now used in all applications to capture images such as those used in traffic lights, roads and malls. Therefore, there is a need to reduce the size of these images while maintaining an acceptable degree of quality. In this paper, we use Python software to apply K-mean Clustering algorithm to compress RGB images. The PSNR, MSE, and SSIM are utilized to measure the image quality after image compression. The results of compression reduced the image size to nearly half the size of the original images using k = 64. In the SSIM measure, the higher the K, the greater the similarity between the two images which is a good indicator to a significant reduction in image size. Our proposed compression technique powered by the K-Mean clustering algorithm is useful for compressing images and reducing the size of images.
For evaluating the performance of some codecs, many researchers have study and develop new objective video quality assessments. However, it's not sufficient for evaluating the temporal feature of video data yet, which is a distinguishable and representative characteristic when compared with other multimedia. This paper propose the method to apply the weight to SSIM (Structural SIMilarity) according to the cognitive psychological feature. And, we presented that the performance of objective video quality assessment applied the weight to SSIM by using the proposed method is superior to one of original SSIM.
이미지 스티칭은 다수의 이미지를 합성하여 카메라의 좁은 시야각(Field of View) 문제를 해결하는 기술이다. 최근 동영상 기반 Panorama, Super Resolution, 360 VR (Virtual Reality) 등의 컨텐츠 사용이 증가함에 따라, 보다 빠르고 정확한 이미지 스티칭 기술의 필요성이 커지고 있다. 지금까지 필요 성능을 만족시키기 위해 많은 알고리즘이 제안되고 있지만, 정확성을 측정하는 객관적 평가 방법은 표준화되지 않고 있다. 최근에서야 PSNR (Peak Signal-to-Noise Ratio) 과 SSIM (Structural Similarity index method) 측정값을 제시하는 방법이 주를 이루고 있지만, 본 논문에서는 PSNR 과 SSIM 측정 방식의 문제점을 밝히고 지역 차분 픽셀 평가 방법을 제안한다. 기하적 유사성과 광도 측정 정보를 포괄하는 LDPM(Local Differential Pixel Mean) 평가 방식을 테스트 이미지를 통해 증명하고 SSIM 과 비교를 통해 해당 평가 방법의 이점을 밝힌다.
Multimedia is a ubiquitous and indispensable part of our daily life and learning such as audio, image, and video. Objective and subjective quality evaluations play an important role in various multimedia applications. Blind image quality assessment (BIQA) is used to indicate the perceptual quality of a distorted image, while its reference image is not considered and used. Blur is one of the common image distortions. In this paper, we propose a novel BIQA index for Gaussian blur distortion based on the fact that images with different blur degree will have different changes through the same blur. We describe this discrimination from three aspects: color, edge, and structure. For color, we adopt color histogram; for edge, we use edge intensity map, and saliency map is used as the weighting function to be consistent with human visual system (HVS); for structure, we use structure tensor and structural similarity (SSIM) index. Numerous experiments based on four benchmark databases show that our proposed index is highly consistent with the subjective quality assessment.
Printing process has been a major sector in the textile industries for a long period of time. With the advent of digital textile printing, the complex procedures of printing preparations and after-treatment processes have been streamlined. For the design of the motives of images to be printed, the use of image handling software, e.g. Photoshop(Adobe), has been of prime importance. Even though the software is extremely useful and functionally versatile, there are many laborious steps involved for the specific textile printing process. The use of a CAD-based textile printing function may help the textile printing process in streamlining the complex processing stages. The image qualities of the output designs have been compared objectively with the aid of several image similarity evaluation schemes including the SSIM, and FSIM Index methods.
인간 시각 체계(Human Visual System: HVS)의 영상 화질 인지 특성을 정교하게 반영하는 객관적 영상 화질 측정(Image Quality Assessment: IQA)방법들이 최근 활발히 연구되어 왔다. 이와 관련된 HVS의 특성 중, 광적응(Luminance Adaptation: LA)효과는 HVS의 왜곡에 대한 민감도가 영상 배경 밝기에 따라 달라지는 특성을 가리키며, 이 효과는 베버의 법칙(Weber's law) 모델을 통해 많은 IQA 방법들에 반영되어져 왔다. 본 논문에서는 처음으로 이러한 베버의 법칙 모델을 기반으로 하는 기존 IQA 방법들이 LA 효과를 부정확하게 반영해 왔다는 점을 수학적/정신물리학적 분석을 통해 밝힌다. 이러한 분석을 기반으로 우리는 IQA 방법에 LA 효과가 정교하게 적용될 수 있는 새로운 LA 효과 기반 국부 가중치 함수(LA effect-based Local weight Function: LALF)를 제안한다. 우리는 제안 LALF를 SSIM(Structural SIMilarity) 및 PSNR 척도(metric)에 적용하여 제안 방법의 효과를 검증하였다. 실험 결과, LALF가 적용된 SSIM은 기존 SSIM 대비 측정된 주관적 화질 점수와의 스피어 랭크 순위 상관계수 기준 약 5% 포인트가 향상될 정도로 제안 방법의 큰 효과성을 입증하였다. 또한, 제안한 LALF는 PSNR에 적용된 경우에도 기존 PSNR 대비 약 2.5% 포인트의 성능 향상을 보였다.
This paper presents a method to evaluate denoising filters based on edge locations in their denoised images. Image quality assessment has often been performed by using structural similarity (SSIM). However, SSIM does not provide clearly the geometric accuracy of features in denoised images. Thus, in this paper, a method to localize edge locations with subpixel accuracy based on adaptive weighting of gradients is used for obtaining the subpixel locations of edges in ground truth image, noisy images, and denoised images. Then, this paper proposes a method to evaluate the geometric accuracy of edge locations based on root mean squares error (RMSE) and jaggedness with reference to ground truth locations. Jaggedness is a measure proposed in this study to measure the stability of the distribution of edge locations. Tested denoising filters are anisotropic diffusion (AF), bilateral filter, guided filter, weighted guided filter, weighted mean of patches filter, and smoothing filter (SF). SF is a simple filter that smooths images by applying a Gaussian blurring to a noisy image. Experiments were performed with a set of simulated images and natural images. The experimental results show that AF and SF recovered edge locations more accurately than the other tested filters in terms of SSIM, RMSE, and jaggedness and that SF produced better results than AF in terms of jaggedness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.