• Title/Summary/Keyword: SSC2

Search Result 239, Processing Time 0.028 seconds

Detection of Mendelian and Parent-of-origin Quantitative Trait Loci in a Cross between Korean Native Pig and Landrace I. Growth and Body Composition Traits

  • Kim, E.H.;Choi, B.H.;Kim, K.S.;Lee, C.K.;Cho, B.W.;Kim, T.-H.;Kim, J.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.669-676
    • /
    • 2007
  • This study was conducted to detect quantitative trait loci (QTL) affecting growth and body composition in an $F_2$ reference population of Korean native pig and Landrace crossbreds. The three-generation mapping population was generated with 411 progeny from 38 $F_2$ full-sib families, and 133 genetic markers were used to produce a sex-average map of the 18 autosomes. The data set was analyzed using least squares Mendelian and parent-of-origin interval-mapping models. Lack-of-fit tests between the models were used to characterize QTL for mode of expressions. A total of 8 (39) QTL were detected at the 5% genome (chromosome)-wise level for the 17 analyzed traits. Of the 47 QTL detected, 21 QTL were classified as Mendelian expressed, 13 QTL as paternally expressed, 6 QTL as maternally expressed, and 7 QTL as partially expressed. Of the detected QTL at 5% genome-wise level, two QTL had Mendelian mode of inheritance on SSC6 and SSC9 for backfat thickness and bone weight, respectively, two QTL were maternally expressed for leather weight and front leg weight on SSC6 and SSC12, respectively, one QTL was paternally expressed for birth weight on SSC4, and three QTL were partially expressed for hot carcass weight and rear leg weight on SSC6, and bone weight on SSC13. Many of the Mendelian QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects that heterosis for growth is appreciable in a cross between Korean native pig and Landrace. Our results indicate that alternate breed alleles of growth and body composition QTL are segregating between the two breeds, which could be utilized for genetic improvement of growth via marker-assisted selection.

Temperature and length of cold storage affect the Quality Maintenance of fresh kiwifruit (Actinidia chinensis Planch) (저온저장 온도 및 저장기간이 키위 "골드"의 품질 유지에 미치는 효과)

  • Yang, Yong-Joon;Lim, Byung-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • The effects of temperature and length of cold storage on the quality maintenance of fresh "Gold" kiwifruit were investigated. Physio-chemical properties were analyzed in kiwifruit held at $2^{\circ}C$ and $6^{\circ}C$ temperatures compared to fruit at room temperature ($20{\sim}28^{\circ}C$) during 8 weeks of storage. Low temperatures ($2^{\circ}C$ and $6^{\circ}C$) significantly delayed softening and soluble solids content (SSC) accumulation compared to higher temperature ($20{\sim}28^{\circ}C$). Physico-chemical properties of fruits, including weight losses, firmness, SSC, titratable acidity (TA), SSC/TA ratio, and flesh color properties were monitored during storage. Fast firmness loss was detected in fruit stored at higher temperatures compared to low temperature ($2^{\circ}C$). Similar results were observed for acidity according to storage temperature and length of cold storage, whereas SSC increased to the limited values (%Brix) during storage. The soluble solids content (SSC) increased markedly during the first 60 days of storage and remained almost constant thereafter for all treatments. SSC accumulation rates decreased from 5 weeks after storage probably due to differences between initial and ripe kiwifruits, and SSC decreased with each passing week due to natural starch conversion over time. The SSC/acid ratio increased from 18 to 27 until 5 weeks after storage and then slowly declined in all kiwifruit stored at different low temperatures. Sensory evaluation results showed no differences in kiwifruit flesh color stored at two storage temperatures of $2^{\circ}C$ and $6^{\circ}C$.

A Survey of Perceptions of Elementary School Teachers on the Small-Scale Chemistry (미량화학(Small-Scale Chemistry)에 대한 초등학교 교사들의 인식)

  • Kim, Sung-Kyu;Kong, Young-Tae
    • Journal of Science Education
    • /
    • v.34 no.2
    • /
    • pp.291-305
    • /
    • 2010
  • The aim of this study was to survey the perceptions of the elementary school teachers on the smallscale chemistry(SSC) following its training session. The teachers participating in the survey were 266 teachers in the Gyeongnam province. They were given a questionnaire that focused on the nine areas of the SSC: Needs for the teacher training and its application, its benefits, issues of safety and danger as well as treatment of environmental pollution, its economic efficiency and the development of investigative skills. The designed questionnaire was checked by an authority, and the responses to each question were tallied and analyzed. The results are as follows. The biggest problems of the traditional experimental methods as rated by the teachers were, in the order of importance, the preparation time, the legal liability of teachers for the safety and accidents, financial issues, disposal of the experimental wastes and the lack of relevant data. Since most of the teachers had not experienced the SSC lab programs in the field, they responded positively to the questions of need for its introduction and training. The implementation of the experimental SSC lab programs should proceed in the following order: introduction into the textbook, teacher training program, after-school education and the invitation of instructors. The most useful materials for the SSC program were CDs, videos, books and various printed materials, in that order. The responses regarding benefits of the SSC program included its simplicity, convenience, time savings, diversity, qualitative and quantitative aspects, integration into the regular class and use of toys. In particular, the teachers mentioned the increased safety due to the small amount of experimental reagents needed and the durability of plastic instruments. The familarity from the use of everyday tools as well as easy access to and the low-cost of the instruments were other important benefits. The teachers in general rated the educational content of the program highly, but many also found it to be average. Some pointed out the lack of sufficient discussion due to the individual or pair groupings as a potential shortcoming. The potential for development of problem solving ability and improvement of skills was rated positively. The number of teacher who rated the development of creativity positively was just over the half. As for the area of improving investigative skills, many found its assessment difficult and confusing because of the lack of its systemic definition and categorization. Based on the findings of this study, I would like to recommend the application and a wider dissemination of the small-scale chemistry lab program into the elementary school science curriculum.

  • PDF

The Effects of Experimental Learning Using Small-Scale Chemistry on the Science Learning Achievement of Elementary School Students and Teachers' Perceptions (Small-Scale Chemistry을 적용한 초등학교 과학실험 수업이 과학 학업성취도에 미치는 영향 및 교사의 인식)

  • Lee, Na-Kyeong;Kim, Sung-Kyu
    • Journal of Science Education
    • /
    • v.38 no.2
    • /
    • pp.302-316
    • /
    • 2014
  • The purpose of this study is to devise a Small-Scale Chemistry (SSC) lab program for primary school learners and to examine its effects on science learning achievement. In addition, it will be examined whether the type of learning groups affects the achievement or not. The participants in the current study were 173 6th graders from 6 classes of Y elementary school in Changwon city, Gyeongnam. Three classes(86) were assigned to the experimental group and the other three, the comparative group after checking the pre-homogeneity between the two groups through t-test on the scores of the science mid-term exam. We conducted five experimental sessions on the Acid and Base in the science textbook for the sixth graders. The students of one experimental class worked in pairs and another class worked individually, but the students of the comparative classes were divided into groups of six(one group with pair, another group with individual work in the SSC program, and the other group conducting the traditional experiment with groups of six students). The data were analyzed by t-test and ANOVA. The results showed that experimental learning using individual work in the SSC program compared to traditional experimental learning was effective in improving science learning achievement. also it was indicated that the teachers could reduce their burden of preparing for classes and of school hours when they utilized the SSC laboratory learning program. Teachers could also actively support students' experimental activities in employing the program. Based on the results, we suggest that the development of the SSC laboratory learning program is meaningful in the sense that this program can help elementary schoolers to improve science learning achievements more than the existing traditional experimental methods.

  • PDF

Growth and Quality of Muskmelon (Cucumis melo L.) as Affected by Fruiting Node Order, Pinching Node Order and Harvest Time in Hydroponics Using Coir Substrate (코이어 배지를 이용한 멜론(Cucumis melo L.) 수경재배 시 착과 절위, 적심 절위 및 과실 수확시기에 따른 멜론의 생육 및 품질 특성)

  • Lim, Mi Young;Choi, Su Hyun;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.406-413
    • /
    • 2020
  • This study was conducted to find out optimum fruiting node order, pinching node order, and harvesting time in hydroponics using coir substrates to produce high quality melon (Cucumis melo L.) fruit. Three plants per coir slab (100 × 20 × 10 cm) were planted for each treatment. Yamazaki standard nutrient solutions for melon were supplied with 1.8, 2.0, and 2.3 dS·m-1 at the early, middle (fruit enlargement step), and late growth stages, respectively. Two cultivars of 'PMR Dalgona' and 'Earl's Aibi' were used for fruiting node order and pinching node order experiments. Fruiting node treatments were conducted three replications (8-10 th, 11-13 th, and 14-15 th nodes) and pinching node treatments treated with three replications (18 th, 21 th, and 24 th nodes). Two cultivars of 'PMR Dalgona' and 'Earl's Crown' were used for fruit harvesting time experiment and treated with in four replications (45, 50, 55, and 60 days after fruiting). In growth characteristics, the leaf width and leaf area of 'PMR Dalgona' were the greatest 28.2 cm and 10,845 ㎠. Respectively, 11-13 th fruiting nodes or more. The node length of 'Earl's Aibi' was the longest by 147.6 cm at 11-13 th fruiting nodes. For fruit quality characteristics, the fruit weight of 'Earl's Aibi' at 11-13 th fruiting node fruiting was the greatest by 2.0 kg. The soluble solids content (SSC) of 'PMR Dalgona' was the highest by 14.5 °Brix at 8-10 th nodes in fruiting node orders and 14.5 °Brix at the 24 th pinching node order, respectively with significant difference. The SSC tends to increase in the same for both cultivars of 'PMR Dalgona' and 'Earl's Aibi' as the position of fruiting node was lower. The SSC and fruit weight of melon harvested at 55-60 days after fruiting was the best. From the results of this study, most of SSC tends to increase in the lower position of fruiting node order and the higher pinching node order, whereas the fruit weight shows a tendency of increasing with higher fruiting node. In addition, the SSC of fruit increased as the number of days after fruiting increased, and further research is needed for more various cultivars. In melon hydroponics using coir substrates, it is needed to figure out the characteristics of each cultivar to determine optimum fruiting node order, pinching node order, and fruit harvest time.

Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System (흡착광산화 시스템을 이용한 효과적인 SSC 페수처리)

  • Kim, Jong Kyu;Lee, Min Hee;Jung, Yong Wook;Joo, Jin Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF

Self-Symptom Checker for COVID-19 Control and Symptom Management

  • Sun-Ju Ahn;Jong Duck Kim;Jong Hyun Yoon;Jung Ha Park
    • Health Policy and Management
    • /
    • v.33 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • Background: Breaking the chain of disease transmission from overseas is necessary to control new infectious diseases such as coronavirus disease 2019 effectively. In this study, we developed a mobile app called Self-Symptom Checker (SSC) to monitor the health of inbound travelers. Methods: SSC was developed for general users and administrators. The functions of SSC include non-repudiation using QR (quick response) codes, monitoring fever and respiratory symptoms, and requiring persons showing symptoms to undergo polymerase chain reaction tests at nearby screening stations following a review of reported symptoms by the Korea Disease Control and Prevention Agency, as well as making phone calls, via artificial intelligence or public health personnel, to individuals who have not entered symptoms to provide the necessary information. Results: From February 12 to March 27, 2020, 165,000 people who were subjected to the special entry procedure installed SSC. The expected number of public health officers and related resources needed per day would be 800 if only the phone was used to perform symptom monitoring during the above period. Conclusion: By applying SSC, more effective symptom monitoring was possible. The daily average number of health officers decreased to 100, or 13% of the initial estimate. SSC reduces the work burden on public healthcare personnel. SSC is an electronic solution conceived in response to health questionnaires completed by inbound travelers specified in the World Health Organization International Health Regulations as a requirement in the event of a pandemic.

Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

  • Lee, Woo Yong;Koh, Seong Ung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. However, corrosion rate was not directly related to SSC susceptibility of steels.

Correlations between quality indices and consumer acceptance in environment-friendly 'Campbell early' grapes (친환경 포도의 품질 인자와 소비자 기호도의 상관성 분석)

  • Lee, Da Uhm;Bae, Jeong Mi;Ku, Kyung Hyung;Choi, Jeong Hee
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.1058-1064
    • /
    • 2016
  • This study investigated the correlation between physicochemical (color, soluble solids content (SSC), pH, titratable acidity (TA), and firmness) and sensory (appearance, taste, odor, and texture) characteristics of environment-friendly 'Campbell early' grapes to identify quality indices. For analysis, samples of similar-sized grapes were collected from five orchards. The results showed that the physicochemical characteristics of CIE $L^*$, CIE $a^*/b^*$, SSC, pH, TA, and firmness and the sensorial characteristics of color intensity, freshness of stem, odor, sourness, sweetness, and elasticity were different among groups. Correlation analysis results showed that an increase in sweetness and firmness and a decrease in sourness were associated with an increase in overall acceptance. Sourness and sweetness were positively correlated with CIE $L^*$ (r=0.88) and firmness (r=0.95), individually. In the principal component analysis results, component F1 and F2 explained 44.35% and 33.77%, respectively, of the total variance (78.12%). F1 represented firmness, sweetness, elasticity, hardness, grape odor, color intensity, sweet odor, sourness, and damage degree. F2 represented CIE $L^*$, TA, CIE $a^*$, CIE $a^*/b^*$, SSC/TA, SSC, and peel thickness. The results showed that consumer acceptance of 'Campbell early' grapes can be determined by assessing physicochemical attributes of firmness, CIE $L^*$, TA, CIE $a^*$, CIE $a^*/b^*$, SSC/TA, and SSC and various sensorial attributes including sweetness, fruit elasticity, fruit hardness, grape odor, and color intensity.