DOI QR코드

DOI QR Code

Growth and Quality of Muskmelon (Cucumis melo L.) as Affected by Fruiting Node Order, Pinching Node Order and Harvest Time in Hydroponics Using Coir Substrate

코이어 배지를 이용한 멜론(Cucumis melo L.) 수경재배 시 착과 절위, 적심 절위 및 과실 수확시기에 따른 멜론의 생육 및 품질 특성

  • 임미영 (국립원예특작과학원 시설원예연구소) ;
  • 최수현 (국립원예특작과학원 채소과) ;
  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 김소희 (국립원예특작과학원 시설원예연구소) ;
  • 정호정 (국립원예특작과학원 시설원예연구소)
  • Received : 2020.07.14
  • Accepted : 2020.09.29
  • Published : 2020.10.31

Abstract

This study was conducted to find out optimum fruiting node order, pinching node order, and harvesting time in hydroponics using coir substrates to produce high quality melon (Cucumis melo L.) fruit. Three plants per coir slab (100 × 20 × 10 cm) were planted for each treatment. Yamazaki standard nutrient solutions for melon were supplied with 1.8, 2.0, and 2.3 dS·m-1 at the early, middle (fruit enlargement step), and late growth stages, respectively. Two cultivars of 'PMR Dalgona' and 'Earl's Aibi' were used for fruiting node order and pinching node order experiments. Fruiting node treatments were conducted three replications (8-10 th, 11-13 th, and 14-15 th nodes) and pinching node treatments treated with three replications (18 th, 21 th, and 24 th nodes). Two cultivars of 'PMR Dalgona' and 'Earl's Crown' were used for fruit harvesting time experiment and treated with in four replications (45, 50, 55, and 60 days after fruiting). In growth characteristics, the leaf width and leaf area of 'PMR Dalgona' were the greatest 28.2 cm and 10,845 ㎠. Respectively, 11-13 th fruiting nodes or more. The node length of 'Earl's Aibi' was the longest by 147.6 cm at 11-13 th fruiting nodes. For fruit quality characteristics, the fruit weight of 'Earl's Aibi' at 11-13 th fruiting node fruiting was the greatest by 2.0 kg. The soluble solids content (SSC) of 'PMR Dalgona' was the highest by 14.5 °Brix at 8-10 th nodes in fruiting node orders and 14.5 °Brix at the 24 th pinching node order, respectively with significant difference. The SSC tends to increase in the same for both cultivars of 'PMR Dalgona' and 'Earl's Aibi' as the position of fruiting node was lower. The SSC and fruit weight of melon harvested at 55-60 days after fruiting was the best. From the results of this study, most of SSC tends to increase in the lower position of fruiting node order and the higher pinching node order, whereas the fruit weight shows a tendency of increasing with higher fruiting node. In addition, the SSC of fruit increased as the number of days after fruiting increased, and further research is needed for more various cultivars. In melon hydroponics using coir substrates, it is needed to figure out the characteristics of each cultivar to determine optimum fruiting node order, pinching node order, and fruit harvest time.

멜론(Cucumis melo L.)의 코이어 배지 수경재배 시 고품질 과실을 생산하기 위한 적정 착과 절위, 적심 절위 및 수확 시기를 구명하고자 하였다. 코이어 배지 슬라브(100 × 20 × 10cm)에 3주를 정식하였다. 양액은 야마자키 멜론 표준액을 이용하였고, 급액 농도는 '초기-중기(과실 비대기)-후기'의 생육 단계별로 1.8-2.0-2.3dS·m-1 공급하였다. 착과 및 적심 절위 실험은 '피엠알달고나'와 '얼스아이비' 2품종을 이용하였다. 착과 절위 실험은 8-10, 11-13 및 14-15 마디에 각각 3처리하였다. 적심 절위 실험은 18, 21 및 24 마디에 각각 3처리하였다. 과실 수확시기 실험은 '피엠알달고나'와 '얼스크라운' 2품종을 이용하여 착과 45일, 50일, 55일 및 60일 후로 4처리하였다. '피엠알달고나' 품종에서 11-13마디 이상 착과 시, 엽폭28.2cm, 엽면적은 10,845㎠로 가장 컸다. 줄기 길이는 '얼스아이비' 품종에서 11-13마디 착과 시 147.6cm로 가장 길었다. 과중은 '얼스아이비' 품종에서 11-13마디 착과시 2.0kg으로 가장 컸다. 과실의 가용성 고형물 함량(SSC)은 '피엠알달고나' 품종에서 8-10 마디 착과시 14.5°Brix, 24 마디 적심시 14.0°Brix로 각각 유의성 있게 가장 높았다. 착과 절위가 낮아질수록 SSC값이 증가하는 경향이 두 품종에서 동일하게 나타났다. '피엠알달고나'와 '얼스크라운' 2품종 모두 착과 55-60일 후 수확된 과실의 SSC 값과 과중이 가장 우수하였다. 종합적으로 검토하면 대부분 SSC값은 착과 절위가 낮아지고 적심 절위가 높아질수록 증가하고, 과중은 착과 절위가 높아질수록 증가하는 경향을 보였다. 착과 후 일수가 증가할수록 과실의 SSC값이 증가하였으며 다양한 품종에 대한 추가 연구가 더 필요하다고 생각되었다. 따라서 코이어 배지를 이용한 수경재배 시 멜론 품종 별로 특성을 잘 파악하여 착과 절위, 적심 절위 및 과실 수확시기를 설정하여야 한다.

Keywords

References

  1. An, C.G., Y.H. Hwang, G.M. Shon, C.S. Lim, J.L. Cho, and B.R. Jeong. 2009. Effect of irrigation amount in rockwool and cocopeat substrates on growth and fruiting of sweet pepper during fruiting period. Kor. J. Hort. Sci. Technol 27:233-238 (in Korean).
  2. Choi, S.H., M.Y. Lim, G.L. Choi, S.H. Kim, and H.J. Jeong. 2019. Growth and quality of two melon cultivars in hydroponics affected by mixing ratio of coir substrate and different irrigation amount on spring season. Protected Horticulture and Plant Factory. 28:376-387 (in Korean). https://doi.org/10.12791/KSBEC.2019.28.4.376
  3. FAO. 2020. Crop statistics. Retrieved from http://www.fao.org/faostat/en/#data/QC.
  4. Hwang, Y.H., K.H. Cho, G.W. Song, W.K. Shin, and B.R. Jeong. 1998. Effect of pinching and fruit setting, and planting density on fruit quality and yield of muskmelon cultured by deep flow technique. J. Bio. Fac. Env. 7: 219-225 (in Korean).
  5. Kim, H.J., and Y.S. Kim. 2003. Effect of irrigation duration by integrated sol radiation on growth and water use efficiency of muskmelon grown in perlite culture. J. Kor. Soc. Hortic Sci. 44:146-151 (in Korean).
  6. Kim, Y.H., B.H. Hwang, and J.K. Kim. 2007. Changes in soluble and transported sugars content and activity of their hydrolytic enzymes in muskmelon (Cucumis melo L.) fruit during development and senescence. Kor. J. Hort. Sci. Technol. 25:89-96 (in Korean).
  7. Lee, S.W., and Z.H. Kim. 2003. Path-coefficient analysis of some characters affecting fruit sweetness in melon (Cucumis melo ssp.). J. Kor. Soc. Hortic Sci. 44:661-665 (in Korean).
  8. Lee, T.I., C.S. Jeong, and K.C. Yoo. 1996. Patterns of sugar accumulation of muskmelon cultivars in relation to spring and fall cultivation. J. Kor. Soc. Hort. Sci. 37:746-750 (in Korean).
  9. Lee, W.J., J.H. Lee, K.S. Jang, Y.H. Choi, H.T. Kim, and G.J. Choi. 2015. Development of efficient screening methods for melon plants resistant to Fusarium oxysporum f. sp. melonis. Kor. J. Hort. Sci. Technol. 33:70-82 (in Korean).
  10. Lee, J.S., M.S. Chang, and C.S. Jeong. 2020. Changes in quality factors of 'Honey One' melon during storage at different temperature. Kor. J. Hort. Sci. Technol. 38:249-262 (in Korean).
  11. Li, X.R., W.H. Cho, C.S. Jeong, K.C. Yoo, and I.S. Kim. 2001. Effects of limited supply of nutrient solution during fruit ripening stage on growth and sugar content of musk melon fruits in ash ball culture. J. Kor. Soc. Hort. Sci. 42:259-263 (in Korean).
  12. Lim, B.S., S.J. Hong, S.H. Oh, D.S. Chung, and K.H. Kim. 2010. Effect of storage temperature on chilling injury and fruit quality of muskmelon. Kor. J. Hort. Sci. Technol. 28:248-253 (in Korean).
  13. Lim, M.Y., S.H. Choi, H.J. Jeong, and G.L. Choi. 2020. Characteristics of domestic net type melon in hydroponic spring cultivars using coir substrates. Kor. J. Hort. Sci. Technol. 38:78-86 (in Korean).
  14. MAFRA. 2019. Present status of greenhouse and vegetable production in 2018. Sejong, Korea. p. 48 (in Korean).
  15. Oh, S.H., R. Bae, and S.K. Lee. 2011. Current status of the research on the postharvest technology of melon (Cucumis melo L.). Korean J. Food Preserv. 18:442-458 (in Korean). https://doi.org/10.11002/kjfp.2011.18.4.442
  16. RDA. 2012. Manual for agriculture investigation. Suwon, Korea 590-593.
  17. Wu, H.C., L.F. Chan, M.L. Wei, and H.Y. Lu. 2010. A simple and inexpensive technique for estimating leaf surface area of muskmelon (Cucumis melo L.). J. Taiwan Agric. Res. 59:71-77.
  18. Yamazaki, K. 1982. Soiless culture. Hakuyu Press, Tokyo, Japan. p. 41.