• Title/Summary/Keyword: SSARR model

Search Result 45, Processing Time 0.031 seconds

Impact of Climate Change on Runoff Analysis in the Geum River Basin (금강 유역에서의 기후변화에 대한 유출 영향 분석)

  • Ahn, Jung-Min;Jung, Kang-Young;Kim, Gyeonghoon;Kwon, Heongak;Yang, Duk-Seok;Shin, Dongseok
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.549-561
    • /
    • 2017
  • Recently IPCC (International Panel on Climate Change, 2007) pointed out that global warming is a certain ongoing process on the earth, due to which water resources management is becoming one of the most difficult tasks with the frequent occurrences of extreme floods and droughts. In this study we made runoff predictions for several control points in the Geum River by using the watershed runoff model, SSARR (Streamflow Synthesis and Reservoir Regulation Model), with daily RCP 4.5 and RCP 8.5 scenarios for 100 year from 1st Jan 2006 to 31st Dec 2100 at the resolution of 1 km given by Climate Change Information Center. As a result of, the Geum River Basin is predicted to be a constant flow increases, and it showed a variation in the water circulation system. Thus, it was found that the different seasonality occurred.

Estimation of Flash Flood Guidance considering Uncertainty of Rainfall-Runoff Model (강우-유출 모형의 불확실성을 고려한 돌발홍수기준)

  • Lee, Keon-Haeng;Kim, Hung-Soo;Kim, Soo-Jun;Kim, Byung-Sik
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.155-163
    • /
    • 2010
  • The flash flood is characterized as flood leading to damage by heavy rainfall occurred in steep slope and impervious area with short duration. Flash flood occurs when rainfall exceeds Flash Flood Guidance(FFG). So, the accurate estimation of FFG will be helpful in flash flood forecasting and warning system. Say, if we can reduce the uncertainty of rainfall-runoff relationship, FFG can be estimated more accurately. However, since the rainfall-runoff models have their own parameter characteristics, the uncertainty of FFG will depend upon the selection of rainfall-runoff model. This study used four rainfall-runoff models of HEC-HMS model, Storage Function model, SSARR model and TANK model for the estimation of models' uncertainties by using Monte Carlo simulation. Then, we derived the confidence limits of rainfall-runoff relationship by four models on 95%-confidence level.

Estimation and Analysis of Parameters for Rainfall-Runoff Model on the Nakdong River (낙동강 수계 유출분석을 위한 강우-유출 모형의 매개변수 산정)

  • Maeng, Seung-Jin;Lee, Soon-Hyuk;Ryoo, Kyong-Sik;Song, Gi-Heon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.266-271
    • /
    • 2005
  • In this study, following works have been carried out : division of Nakdong River Basin into 25 sub basins, development of a technique to evaluate spatial distribution of rainfall and analysis of rainfall data of 169 stations, selection of control points, and selection of a hydrologic model(SSARR). The runoff analysis showed that the surface-subsurface separation and soil moisture index parameters are the most important two to the simulation result.

  • PDF

Automatic Calibration of Rainfall-runoff Model Using Multi-objective Function (다중목적함수를 이용한 강우-유출 모형의 자동보정)

  • Lee, Kil-Seong;Kim, Sang-Ug;Hong, Il-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.861-869
    • /
    • 2005
  • A rainfall-runoff model should be calibrated so that the model simulates the hydrological behavior of the basin as accurately as possible. In this study, to calibrate the five parameters of the SSARR model, a multi-objective function and the genetic algorithm were used. The solution of the multi-objective function will not, in general, be a single unique set of parameters but will consist of the so-called Pareto solution according to various trade-offs between the different objectives. The calibration strategy using multi-objective function could decrease calibrating time and effort. From the Pareto solution, a single solution could be selected to simulate a specific flow condition.

Daily Runoff Simulation and Analysis Using Rainfall-Runoff Model on Nakdong River (강우-유출모형에 의한 낙동강수계 일유출모의와 분석)

  • Maeng Sung Jin;Lee Soon Hyuk;Ryoo Kyoung Sik;Song Gi Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.619-622
    • /
    • 2005
  • 적용대상 유역은 낙동강수계로 하였으며 소유역 분할은 총 25개로 하였으며, 강우관측소의 선정과 Thiessen 계수의 산정은 최근에 한국수자원공사에서 새로 추가한 강우관측소를 위주로 대상 연도별로 달리하여 강우관측소를 선정하였다. 강우자료의 결측치는 RDS 방법을 사용하여 보완하였다. 대상연도별 소유역별로 일간 유역 평균 강우량을 산정하였다. 적용 모형의 선정은 한국수자원공사 실무부서에서의 적용사례가 빈번한 SSARR 모형을 최종적으로 선정하였다. SSARR 모형의 입력자료를 물리적 매개변수, 수문기상 매개변수 및 내부처리 매개변수로 구분하여 구축하였고 매개변수의 민감도분석과 함께 모형의 보정을 실시하였다. 민감도 분석 결과, 유역유출과 관련된 매개변수에서는 고수시와 저수시의 경우 지표수와 복류수의 분리하는 매개변수에서 민감도가 크게 나타났다. 저수시의 경우 지하수 중 회귀지하수가 차지하는 비율이 크게 나타났고, 지표수, 복류수, 지하수 및 회귀지하수의 저류시간에서 비교적 큰 민감도를 나타내었다. 1983년부터 2003년까지 21개년에 걸쳐 25개 소유역별로 일평균 자연유출량을 산정하여 이를 이용한 반순, 순, 월 및 연평균 자연유출량을 산정하였다.

  • PDF

Optimal Water Allocation Using Streamflow Network Model and Global Optimization Method (하천망 모형과 전역최적화기법을 이용한 저수지 용수의 최적 배분)

  • Kang, Min Goo;Park, Seung Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.292-297
    • /
    • 2004
  • 본 연구에서는 단일목적 저수지와 다목적 댐의 최적운영을 위하여 전역최적해를 탐색하는 SCE-UA법을 사용하는 비선형계획법을 적용한 최적화 모형을 구성하고 과거 운영자료를 사용하여 모형의 적용성을 검토하고 분석하였다. 또한, 다목적댐의 운영수위 상승으로 인하여 발생하는 추가용수를 댐하류로 추가적으로 공급함에 따른 댐운영상의 문제점과 해결책을 제시했다. 관개용 단일 목적 저수지의 유입량은 하천망 모형인 SSARR 모형을 이용하여 추정하였다. 관개용 단일 목적저수지의 용수배분을 최적화한 결과, 실측치와 최적방류량간의 상대오차가 $-2.6\~10.5\%$ 범위를 나타냈으며, 비교적 실측방류량과 유사한 형태로 용수를 공급하는 길과를 나타냈다. 다목적 저수지의 최적운영을 위해 발전량, 저수량 및 필요수량의 관계를 목적함수로하는 최적화 모형을 구성하여 섬진강댐의 최적운영에 적용하였다. 섬진강댐의 댐하류 방류량 증가에 따른 운영상의 문제점을 해결하기 위하여 댐하류 유지용수량을 0.17, 0.50, 0.70, 1.0, 1.5, $3.0m^3/sec$ 방류하는 경우로 구분하여 최적운영한 길과, 댐하류 유지용수량이 $1.0m^3/sec$ 이하인 경우에 발전량이 실적평균발전량에 근접한 결과를 나타냈으며, 용수공급량도 계획공급량인 377.4 백만 $m^3$ 보다 $28.9\~100.7$ 백만 $m^3$ 만큼 많은 양을 공급하는 결과를 나타냈다.

  • PDF

Development of a Stream Discharge Estimation Program (자연하천 유량산정 프로그램 개발)

  • Lee Sang Jin;Hwang Man Ha;Lee Bae Sung;Ko Ick Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.27-38
    • /
    • 2006
  • In this study, we developed a program to estimate discharge efficiently considering major hydraulic characteristic including water level, river bed, water slope and roughness coefficient in a natural river. Stream discharge was measured at Gongju gauge station located in the down stream of the Daechung Dam during normal and dry seasons from 2003 to 2004. The developed model was compared with the results from the existing rating curve at T/M gage stations, and was used for runoff analyses. Evaluating the developed river discharge estimation program, it was applied during 1983-2004 that base flow separation method and RRFS (Rainfall Runoff Forecasting System) which is based on SSARR (Streamflow Synthesis And Resevoir Regulation). The result presents the stage-discharge curve creator range at the Gong-ju is overestimated by approximately $10-20\%$, especially at the low stage. It is attributed to the hydraulic characteristics at the study. The discharge simulated by the RRFS and base flow separation, which is calibrated using the measurement at the early spring and late fall season during relatively d]v season, shows the least errors. The coefficient of roughness at Gongju station varied with the high and low water level.

Realtime Streamflow Prediction using Quantitative Precipitation Model Output (정량강수모의를 이용한 실시간 유출예측)

  • Kang, Boosik;Moon, Sujin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.579-587
    • /
    • 2010
  • The mid-range streamflow forecast was performed using NWP(Numerical Weather Prediction) provided by KMA. The NWP consists of RDAPS for 48-hour forecast and GDAPS for 240-hour forecast. To enhance the accuracy of the NWP, QPM to downscale the original NWP and Quantile Mapping to adjust the systematic biases were applied to the original NWP output. The applicability of the suggested streamflow prediction system which was verified in Geum River basin. In the system, the streamflow simulation was computed through the long-term continuous SSARR model with the rainfall prediction input transform to the format required by SSARR. The RQPM of the 2-day rainfall prediction results for the period of Jan. 1~Jun. 20, 2006, showed reasonable predictability that the total RQPM precipitation amounts to 89.7% of the observed precipitation. The streamflow forecast associated with 2-day RQPM followed the observed hydrograph pattern with high accuracy even though there occurred missing forecast and false alarm in some rainfall events. However, predictability decrease in downstream station, e.g. Gyuam was found because of the difficulties in parameter calibration of rainfall-runoff model for controlled streamflow and reliability deduction of rating curve at gauge station with large cross section area. The 10-day precipitation prediction using GQPM shows significantly underestimation for the peak and total amounts, which affects streamflow prediction clearly. The improvement of GDAPS forecast using post-processing seems to have limitation and there needs efforts of stabilization or reform for the original NWP.

A Basic Study on the Flood-Flow Forecasting System Model with Integrated Optimal Operation of Multipurpose Dams (댐저수지군의 최적연계운영을 고려한 유출예측시스템모형 구축을 위한 기초적 연구)

  • 안승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.48-60
    • /
    • 1995
  • A flood - flow forecasting system model of river basins has been developed in this study. The system model consists of the data management system(the observation and telemetering system, the rainfall forecasting and data-bank system), the flood runoff simulation system, the reservoir operation simulation system, the flood forecasting simulation system, the flood warning system and the user's menu system. The Multivariate Rainfall Forecasting model, Meteorological factor regression model and Zone expected rainfall model for rainfall forecasting and the Streamflow synthesis and reservoir regulation(SSARR) model for flood runoff simulation have been adopted for the development of a new system model for flood - flow forecasting. These models are calibrated to determine the optimal parameters on the basis of observed rainfall, 7 streamfiow and other hydrological data during the past flood periods.

  • PDF

Development of Rainfall-Runoff forecasting System (유역 유출 예측 시스템 개발)

  • Hwang, Man Ha;Maeng, Sung Jin;Ko, Ick Hwan;Ryoo, So Ra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF