Browse > Article
http://dx.doi.org/10.3741/JKWRA.2005.38.10.861

Automatic Calibration of Rainfall-runoff Model Using Multi-objective Function  

Lee, Kil-Seong (Dept. of Civil, Urban and Geosystem Engineering, Seoul National University)
Kim, Sang-Ug (Korea Institute of Construction Technology)
Hong, Il-Pyo (Korea Institute of Construction Technology)
Publication Information
Journal of Korea Water Resources Association / v.38, no.10, 2005 , pp. 861-869 More about this Journal
Abstract
A rainfall-runoff model should be calibrated so that the model simulates the hydrological behavior of the basin as accurately as possible. In this study, to calibrate the five parameters of the SSARR model, a multi-objective function and the genetic algorithm were used. The solution of the multi-objective function will not, in general, be a single unique set of parameters but will consist of the so-called Pareto solution according to various trade-offs between the different objectives. The calibration strategy using multi-objective function could decrease calibrating time and effort. From the Pareto solution, a single solution could be selected to simulate a specific flow condition.
Keywords
Multi-objective function; Pareto solution; Automatic calibration; Genetic algorithm;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Madsen, H. (2000). 'Automatic calibration of a conceptual rainfall-runoff model using multiple objectives.' Journal of Hydrology, No. 235, pp. 276-288   DOI   ScienceOn
2 Holland, J.H. (1975). Adaptation in natural and artificial systems. MIT Press, Chambridge
3 Klepper, O., Scholten, H., and Kamer, J.P.G. (1991). 'Prediction uncertainty in an ecological model of the Osterschelde Estuary.' Journal of Forecasting, Vol. 10, pp. 191-209   DOI
4 Liong, S.Y., Khu, S.T., and Chan, W.T. (2001). 'Derivation of Pareto front with genetic algorithm and neural network.' Journal of Hydrologic Engineering, Vol. 6, No. 1, pp. 52-61   DOI   ScienceOn
5 Goicoechea, A., Hansen, D.R., Duckstein, L. (1982). Multiobjective decision analysis with engineering and business applications. John Wiley & Sons, Inc.
6 Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and learning. Addison-Wesley Publishing Co.
7 Gupta, H.V. and Sorooshian, S. (1985). 'The relationship between data and the precision of parameter estimates of hydrologic models.' Journal of Hydrology, No. 81, pp. 57-77   DOI   ScienceOn
8 Gupta, H.V., Sorooshian, S. and Yapo, P.O. (1998). 'Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information.' Water Resources Research, Vol. 34, No. 4, pp. 751-763   DOI   ScienceOn
9 성윤경, 김상현, 김현준, 김남원 (2004). '다양한 목적함수와 최적화 방법을 달리한 SIMHYD와TANK 모형의 적용성 연구.' 한국수자원학회논문집, 한국수자원학회, 제37권, 제2호, pp. 121-131   과학기술학회마을   DOI   ScienceOn
10 강민구, 박승우, 임상준, 김현준 (2002). '전역최적화 기법을 이용한 강우-유출모형의 매개변수 자동보정.' 한국수자원학회논문집, 한국수자원학회, 제35권, 제5호, pp. 541-552   과학기술학회마을   DOI   ScienceOn
11 이길성, 김상욱 (2001). '유전자알고리즘을 사용한 SSARR모형의 자동보정.' 대한토목학회논문집, 대한토목학회, 제21권 제3-B호, pp. 171-183
12 Fleming, G. (1977). Computer simulation techniques in hydrology. Elsevier