• Title/Summary/Keyword: SRM

Search Result 1,132, Processing Time 0.031 seconds

Ultra-fast Generic LC-MS/MS Method for High-Throughput Quantification in Drug Discovery

  • Kim, So-Hee;Yoo, Hye Hyun;Cha, Eun-Ju;Jeong, Eun Sook;Kim, Ho Jun;Kim, Dong Hyun;Lee, Jaeick
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.47-50
    • /
    • 2013
  • An ultra-fast generic LC-MS/MS method was developed for high-throughput quantification of discovery pharmacokinetic (PK) samples and its reliability was verified. The method involves a simple protein precipitation for sample preparation and the analysis by ultra-fast generic LC-MS/MS with the ballistic gradient program and selected reaction monitoring (SRM) mode. Approximately 290 new chemical entities (NCEs) (over 10,000 samples) from 5 therapeutic programs were analyzed. The calibration curves showed good linearity in the concentration range of 1, 2 or 5 to 2000 ng/mL. No significant ion suppression was observed in the elution region of all the NCEs. When approximately 300 plasma samples were continuously analyzed, the peak area of internal standard was constant and reproducible. In the repeated analysis of samples, the plasma concentrations and the area under the curve (AUC) were consistent with the results from the first analysis. These results showed that the present ultra-fast generic LC-MS/MS method is reliable in terms of selectivity, sensitivity, and reproducibility and could be useful for high-throughput quantification and other bioanalysis in drug discovery.

A Study on Mineral Distribution in Korean Foodstuffs by Neutron Activation Analysis (중성자방사화분석법에 의한 국내 식품원재료의 무기질 분포 연구)

  • Cho, Seung-Yeon;Hong, Woo-Jung;Lee, Jung-Yeon;Kang, Sang-Hoon;Chung, Young-Sam
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.390-395
    • /
    • 2002
  • Concentrations of minerals (Ca, K, Mg, Na, Se, Zn, Fe, and Mn) in 50 different Korean foodstuffs were determined through neutron activation analysis. To check the accuracy of this method, the U.S. NIST standard reference materials were analyzed. Anchovy, sesame, perilla, and laver were found to contain relatively higher concentrations of Ca, Mg, Fe, and Zn than the other foodstuffs.

Seismic Damage Analysis for Element-Level and System-Level of Steel Structures (강구조물의 구조요소 및 구조계에 대한 지진손상도 해석)

  • 송종걸;윤정방;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.95-111
    • /
    • 1998
  • In this study, the concepts and procedures of the seismic damage analysis methods are examined for both the element-level and the system-level. The seismic damage analysis at the element-level is performed for several example structures using existing method for structural elements or single-degree-of-freedom (SDOF) systems such as the Park and Ang method. In order to analyze seismic damage at the system-level, two types of procedures are used. In the first type of procedure, the system-level seismic responses can be estimated by using the system representative response method(SRRM), or the equivalent SDOF system response method (ESDOF-SRM). Then, the system-level seismic damage is analyzed from the system-level seismic responses using existing method for structural elements or SDOF systems. IN the second type of procedure, the system-level seismic damages are analyzed using the element damage combination method (EDCM) combing the element-level damage indices determined by existing method. To compare tendency of the seismic damage analysis using each methods, example analysis is accomplished for several cases of different structures and different earthquake excitation.

  • PDF

Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Characterization of U-7Mo/Al-5Si Dispersion Fuels

  • Lee, Jeongmook;Park, Jai Il;Youn, Young-Sang;Ha, Yeong-Keong;Kim, Jong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.645-650
    • /
    • 2017
  • This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U-7Mo/Ale5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured $^{98}Mo/^{238}U$ ratios in fuel particles from spot analysis, and 3.4% RSD for $^{98}Mo/^{238}U$ ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U-7Mo fuel particles from the Al-5Si matrix. Each mass spectrum peak indicates the presence of U-7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for $^{98}Mo$ by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U-Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

Investigations of Multi-Carrier Pulse Width Modulation Schemes for Diode Free Neutral Point Clamped Multilevel Inverters

  • Chokkalingam, Bharatiraja;Bhaskar, Mahajan Sagar;Padmanaban, Sanjeevikumar;Ramachandaramurthy, Vigna K.;Iqbal, Atif
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.702-713
    • /
    • 2019
  • Multilevel Inverters (MLIs) are widely used in medium voltage applications due to their various advantages. In addition, there are numerous types of MLIs for such applications. However, the diode-less 3-level (3L) T-type Neutral Point Clamped (NPC) MLI is the most advantageous due to its low conduction losses and high potential efficiency. The power circuit of a 3L T-type NPC is derived by the conventional two level inverter by a slight modification. In order to explore the MLI performance for various Pulse Width Modulation (PWM) schemes, this paper examines the operation of a 3L (five level line to line) T-type NPC MLI for various types of Multi-Carriers Pulse Width Modulation (MCPWM) schemes. These PWM schemes are compared in terms of their voltage profile, total harmonic distortion (THD) and conduction losses. In addition, a 3L T-type NPC MLI is also compared with the conventional NPC in terms of number of switches, clamping diodes, main diodes and capacitors. Moreover, the capacitor-balancing problem is also investigated using the Neutral Point Fluctuation (NPF) method with all of the MCPWM schemes. A 1kW 3L T-type NPC MLI is simulated in MATLAB/Simulink and implemented experimentally and its performance is tested with a 1HP induction motor. The results indicate that the 3L T-type NPC MLI has better performance than conventional NPC MLIs.

Classifying Indian Medicinal Leaf Species Using LCFN-BRNN Model

  • Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3708-3728
    • /
    • 2021
  • Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.

Analysis of the mechanical properties and failure modes of rock masses with nonpersistent joint networks

  • Wu, Yongning;Zhao, Yang;Tang, Peng;Wang, Wenhai;Jiang, Lishuai
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2022
  • Complex rock masses include various joint planes, bedding planes and other weak structural planes. The existence of these structural planes affects the mechanical properties, deformation rules and failure modes of jointed rock masses. To study the influence of the parameters of a nonpersistent joint network on the mechanical properties and failure modes of jointed rock masses, synthetic rock mass (SRM) technology based on discrete elements is introduced. The results show that as the size of the joints in the rock mass increases, the compressive strength and the discreteness of the rock mass first increase and then decrease. Among them, the joints that are characterized by "small but many" joints and "large and clustered" joints have the most significant impact on the strength of the rock mass. With the increase in joint density in the rock mass, the compressive strength of rock mass decreases monotonically, but the rate of decrease gradually decreases. With the increase in the joint dip angle in rock mass, the strength of the rock mass first decreases and then increases, forming a U-shaped change rule. In the analysis of the failure mode and deformation of a jointed rock mass, the type of plastic zone formed after rock mass failure is closely related to the macroscopic displacement deformation of the rock mass and the parameters of the joints, which generally shows that the location and density of the joints greatly affect the failure mode and displacement degree of the jointed rock mass. The instability mechanism of jointed surrounding rock is revealed.

Comparison of Vitamin B5 Content and True Retention in Commonly Consumed Vegetables by Different Cooking Methods (국내 다소비 채소류의 조리에 따른 비타민 B5 함량 및 잔존율 비교)

  • Jin Ju, Park;Arin, Park;Eunji, Park;Youngmin, Choi
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.6
    • /
    • pp.540-546
    • /
    • 2022
  • This study aimed to determine the changes in the vitamin B5 content of raw and cooked vegetables. The nineteen vegetables were subjected to different cooking methods, viz. blanching, boiling, pan-broiling, and steaming. Vitamin B5 was quantified by reversed-phase high-performance liquid chromatography (HPLC) using photodiode-array (PDA) detection (200 nm). The standard reference materials (SRM) were used to validate the accuracy of vitamin B5 measurement method used in this study. The cooking yields ranged from 82.63 to 107.62% and decreased in most of the vegetables except bitter melon, curled mallow, and eggplant. The raw kabocha squash, Danhobak, had the highest vitamin B5 content (0.671 mg/100 g) among the samples. All cooked vegetables showed lower vitamin B5 content compared to the raw samples. The true retention ranged from 0% (crown daisy, blanching) to 84.49% (kabocha squash, steaming). These results indicate that vitamin B5 is degraded after cooking. Pan-broiling and steaming are better cooking methods than the others for retaining vitamin B5. The true retention of vitamin B5 in the samples markedly depends on the cooking method and food matrix. These results can be used as important basic data for nutritional evaluation of meals.

Standard Representation of Simulation Data Based on SEDRIS (SEDRIS기반의 모의자료 표현 표준화)

  • Kim, Hyung-Ki;Kang, Yun-A;Han, Soon-Hung
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.249-259
    • /
    • 2010
  • Synthetic environment data used in defense M&S fields, which came from various organization and source, are consumed and managed by their own native database system in distributed environment. But to manage these diverse data while interoperation in HLA/RTI environment, neutral synthetic environment data model is necessary to transmit the data between native database. By the support of DMSO, SEDRIS was developed to achieve this requirement and this specification guarantees loss-less data representation, interchange and interoperability. In this research, to use SEDRIS as a standard simulation database, base research, visualization for validation, data interchange experiment through test-bed was done. This paper shows each research case, result and future research direction, to propose standardized SEDRIS usage process.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.