• Title/Summary/Keyword: SQUID sensors

Search Result 33, Processing Time 0.023 seconds

Magnetocaloric Properties of AlFe2B2 Including Paramagnetic Impurities of Al13Fe4

  • Lee, J.W.;Song, M.S.;Cho, K.K.;Cho, B.K.;Nam, Chunghee
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1555-1560
    • /
    • 2018
  • $AlFe_2B_2$ produced by using a conventional arc melter has a ferromagnetic material with a Curie temperature ($T_C$) of around 300 K, but the arc-melt generates paramagnetic $Al_{13}Fe_4$ impurities during the synthesis of $AlFe_2B_2$. Impurities are brought to cause a decrease in magnetocaloric effects (MCEs). To investigate the effects of $Al_{13}Fe_4$ impurities on MCEs, we prepared and compared ascast and acid-treated samples, where the acid treatment was performed to remove the $Al_{13}Fe_4$ impurities. For the structural analysis, powder X-ray diffraction was carried out, and the measured data were subjected to a Rietveld refinement. The presence of $Al_{13}Fe_4$ impurities in the as-cast sample was observed in the phase analysis measurements. Magnetic properties were investigated by using Superconducting Quantum Interference Device (SQUID) measurements for the as-cast and the acid-treated $AlFe_2B_2$ samples. From isothermal magnetization measurements, Arrott plots were obtained showing that the transition of $AlFe_2B_2$ has a second-order magnetic phase transition (SOMT). The $T_C$ and the saturation magnetization increased for the acid-treated sample due to removal of the paramagnetic impurities. As a consequence, the magnetic entropy change ($-{\Delta}S$) increased in the pure $AlFe_2B_2$ samples, but the full width at half maximum in the plot of $-{\Delta}S$ vs. T decreased due to the absence of impurities.

Development of Contaminant Detection System using HTS SQUIDs

  • Ohtani, T.;Tanaka, S.;Narita, Y.;Ariyoshi, S.;Suzuki, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.38-42
    • /
    • 2015
  • In terms of food safety,mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products.

Electronic Sensors and Multivariate Approaches for Taste and Odor in Korean Soups and Stews (전자센서와 다변량 분석을 이용한 국내 국·탕류의 향미 특성 분석)

  • Boo, Chang Guk;Hong, Seong Jun;Cho, Jin-Ju;Shin, Eui-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.430-437
    • /
    • 2020
  • This is an approach study on the sensory properties (taste and odor) of 15 types of Korean conventional soups and stews using electronic nose and tongue. The relative sensor intensity for the taste components of the samples using electronic tongue was demonstrated. By SRS (sourness) sensor, sogogi-baechuguk (beef and cabbage soup) had the highest rate of 9.0. The STS (saltiness) sensor showed the highest score of 8.2 for ojingeoguk (squid soup). For the UMS (umami) sensor, which identifies savoriness, the sogogi-baechuguk was the highest at 10.1. The SWS (sweetness) sensors showed relatively little difference, with sigeumchi-doenjangguk (spinach and bean paste soup) at the highest of 7.3. According to the BRS sensor, which tests for bitterness, the siraegi-doenjangguk (dried radish green and bean paste soup) was the highest at 7.8. By principal component analysis (PCA), we observed variances of 56.21% in principal component 1 (PC1) and 25.23% in PC2. For each flavor component, we observed -0.95 and -0.20 for factor loading of PC1 and PC2 for SRS sensors, 0.96 and 0.14 for STS sensors, and -0.94 and 0.22 for PC1 and PC2 for UMS sensors, and PC1 and 0.22 for PC1 and PC2 loading for SWS sensors. The similarity between the samples identified by clustering analysis was largely identified by 4 clusters. A total of 25 kinds of volatile compounds in 15 samples were identified, and the ones showing the highest relative content in all samples were identified as ethanol and 2-methylthiophhene. The main ingredient analysis confirmed variances of 28.54% in PC1 and 20.80% in PC2 as a result of the pattern for volatile compounds in 15 samples. In the cluster analysis, it was found to be largely classified into 3 clusters. The data in this study can be used for a sensory property database of conventional Korean soups and stews using electronic sensors.