• Title/Summary/Keyword: SPME fiber

Search Result 67, Processing Time 0.022 seconds

Analysis of Volatile Compounds in Elsholtzia splendens by Solid Phase Microextraction (SPME에 의한 꽃향유의 휘발성 향기성분 분석)

  • 정미숙;이미순
    • Korean journal of food and cookery science
    • /
    • v.19 no.1
    • /
    • pp.79-82
    • /
    • 2003
  • Volatile compounds in Elsholtzia splendens were extracted by solid phase microextraction (SPME). Two kinds of SPME fiber, carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane (PDMS) were used to determine the selectivity of the fibers to the different flavor compounds present in the Elsholtzia splendens. Identification of volatile compounds was based on the linear retention indices (RI) and the comparison of their mass spectra with those of on-computer library. Thirty compounds were identified in the volatile compounds extracted by CAR/PDMS fiber, including 1 aldehyde, 5 alcohols, 3 hydrocarbons, 17 terpene hydrocarbons, 3 ketones and 1 miscellaneous. And 5 alcohols, 3 hydrocarbons, 18 terpene hydrocarbons, 3 ketones and 2 miscellaneouses were identified in PDMS fiber. These results suggested that the selectivity of PDMS fiber was similar to that of CAR/PDMS fiber in Elsholtzia splendens. The major volatile compounds were naginataketone and elsholtziaketone in Elsholtzia splendens.

Analysis of Mineral and Volatile Flavor Compounds in Pimpinella brachycarpa N. by ICP-AES and SDE, HS-SPME-GC/MS (ICP-AES와 SDE, HS-SPME-GC/MS를 이용한 참나물의 무기성분과 향기성분)

  • Chang, Kyung-Mi;Chung, Mi-Sook;Kim, Mi-Kyung;Kim, Gun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.2
    • /
    • pp.246-253
    • /
    • 2007
  • Mineral and volatile flavor compounds of Pimpinella brochycarpa N., a perennial Korean medicinal plant of the Umbelliferae family, were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and simultaneous steam distillation extract (SDE)-gas chromatography mass spectrometry (GC/MS), head space solid phase micro-extraction (HS-SPME)-GC/MS. Mineral contents of the stalks and leaves were compared and the flavor patterns of the fresh and the shady air-dried samples were obtained by the electronic nose (EN) with 6 metal oxide sensors. Principal component analysis (PCA) was carried out using the data obtained from EN. The 1st principal values of the fresh samples have + values and the shady air-dried have - values. The essential oil extracted from the fresh and the shady air-dried by SDE method contain 58 and 31 flavor compounds. When HS-SPME method with CAR/PDMS fiber and PDMS fiber were used, 34 and 21 flavor compounds. The principal volatile components of Pimpinella brachycarpa N. were ${\alpha}$-selinene, germacrene D, and myrcene.

Integration of Headspace Solid Phase Micro-Extraction with Gas Chromatography for Quantitative Analysis of Formaldehyde

  • Lo, Kong Mun;Yung, Yen Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.139-142
    • /
    • 2013
  • A study was carried out to evaluate the solid phase micro-extraction (SPME) for formaldehyde emission analysis of uncoated plywood. In SPME, formaldehyde was on-fiber derivatized through headspace extraction and analyzed by gas chromatography coupled with mass spectrometry (GC/MS). The SPME was compared with desiccators (DC-JAS 233), small-scale chamber (SSC-ASTM D6007) and liquid-liquid extraction (LLE-EPA 556) methods which were performed in accordance with their respective standards. Compared to SSC (RSD 4.3%) and LLE (RSD 5.0%), the SPME method showed better repeatability (RSD 1.8%) and not much difference from DC (RSD 1.4%). The SPME has proven to be highly precise (at 95% confidence level) with better recovery (REC 102%). Validation of the SPME method for formaldehyde quantitative analysis was evidenced. In addition, the SPME by air sampling directly from plywood specimens (SPME-W) correlated best with DC ($r^2$ = 0.983), followed by LLE ($r^2$ = 0.950) and SSC ($r^2$ = 0.935).

Effect of Residual Chlorine on the Analysis of Geosmin and 2-MIB Using SPME (Solid Phase Microextraction) (SPME를 이용한 Geosmin과 2-MIB분석 시 잔류염소의 영향에 관한 연구)

  • Kim, Sung-Jin;Hong, Seong-Ho;Min, Dal-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.713-719
    • /
    • 2005
  • SPME (Soild phase microextraction) has been used in the analysis of many volatile organic compounds, such as geosmin and 2-methylisoborneol (2-MIB), trihalomethanes (THMs) in drinking water. SPME fiber is characterized by high adsorption capacity (DVB/CAR/PDMS, DVB/PDMS etc.). Although the highly active adsorption capacities of the SPME fiber are often to the chemical functional group, surface properties play a significant role in determining the surface adsorption capacities. The objectives of this study were to evaluate effect of residual chlorine on analysis of geosmin and 2-MIB. Image taken by SEM before preloaded with chlorine, the surface and porous media was almost perfect spherical shape and no clogging of pores. However, after preloaded with chlorine the surface was aggregated and pore was blocked. The recovery rate of geosmin and 2-MIB coexisting with chlorine was reduced by 35 to 62%. The recovery rate with preloaded with chlorine was reduced by 25 to 43%. The lower concentration of geosmin and 2-MIB and the higher concentration of chlorine existed in water, the lower the recovery rate was.

Volatile Components in Persimmon Vinegars by Solid-Phase Microextraction (Solid-Phase Microextraction(SPME)을 이용한 감식초의 휘발성 성분 분석)

  • Seo, Ji-Hyung;Park, Nan-Young;Jeong, Yong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.153-156
    • /
    • 2001
  • Traditional static headspace and headspace solid-phase microextraction(SPME) techniques were compared for their effectiveness in the extraction of volatile flavor compounds from the headspace of persimmon vinegar. The adsorption condition of SPME fiber for equilibrated headspace vapor was selected as $80^{\circ}C$ and 20 min. Total FID response for volatiles of persimmon vinegar was exactly higher such as total peak area $18.18{\times}10^6$ in SPMEGC technique than total peak area $1.35{\times}10^6$ in static headspace-GC. The major volatiles in persimmon vinegar were acetic acid, ethyl acetate, 3-hydroxy-2-butanone, ethanol, phenethyl alcohol. From static headspace-GC technique, 3 acids, 3 aldehydes, 5 alcohols, 9 esters and 1 ketone were identified. From SPME-GC technique, total 34 compounds including 6 acids, 7 aldehydes, 6 alcohols, 9 esters, 2 hydrocarbones, 1 ketone, 3 others were detected. Also the ratio for benzaldehyde, phenethylacetate and phenethylalcohol were higher in SPME-GC.

  • PDF

Recent Development of Laboratory-made Solid-phase Microextraction Fibers on the Application of Food Safety Analysis

  • Zeng, Jingbin;Chen, Jinmei;Chen, Wenfeng;Huang, Xiaoli;Chen, Liangbi;Chen, Xi
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.579-585
    • /
    • 2009
  • Solid-phase microextraction (SPME) has gained widespread acceptance in sample pretreatment due to its solvent-free and easy-to-operate properties. SPME fibers are considered as a key part of SPME technique, since it primarily determines the extraction performance of the method including sensitivity, selectivity, and reproducibility. Generally speaking, target analyte with different chemical property requires fiber coating that has the best affinity towards it. Due to the lack of varieties of commercial fibers available currently, considerable efforts have been recently made to develop tailor-made fibers to fulfill increasing demands of different analysis. This paper concisely classify some SPME fiber preparation approaches such as sol-gel technology, physical deposition, molecularly imprinted technique, and their respective application in food safety analysis.

Comparison of Solid Phase Microextraction-Gas Chromatograph/Pulsed Flame Photometric Detector (SPME-GC/PFPD) and Static Headspace-Gas Chromatograph/Pulsed Flame Photometric Detector (SH-GC/PEPD) for the Analysis of Sulfur-Containing Compounds (Solid phase microextraction-gas chromatograph/pulsed flame photometric detector(SPME-GC/PFPD)와 static headspace-gas chromatograph/pulsed flame photometric detector(SH-GC/PEPD)를 이용한 황 함유 화합물들의 분석 방법 비교)

  • Yang, Ji-Yeon;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.695-701
    • /
    • 2005
  • Efficient method was established for analysis of sulfur-containing compounds, including dimethyl disulfide, dimethyl trisulfide, 3-methyl thiophene, allyl mercaptan, 2-methyl-3-furanthiol, and methional. Sulfur-containing compounds were extracted through solid phase microextraction (SPME) or static headspace extraction (SH), and quantified using gas chromatograph equipped with pulsed flame photometric detector. All sulfur compounds, except ally mercaptan, showed higher detection response when dissolved in hexane than in dichloromethane. Linear range was $10^2-10^4$. Dimethyl trisulfide showed lowest limit of detection (LOD) value of 15.2 ppt, and methional highest of 70.5 ppb. Highest extraction efficiency for sulfur-containing compounds, particularly polar and small molecular weight compounds, was observed in 75mm carboxen/polydimethylsiloxane fiber, followed by 65mm polydimethylsiloxane/divinylbenzene and 100mm polydimethylsiloxane. Compared to SPME, less sulfur-containing compounds could be analyzed by SH, mainly due to its low extraction efficiency, although lower amount of artifacts were formed during sample preparation.

Simultaneous Analysis of 17 Organophosphorous Pesticides in Blood by Automated Head Space-SPME GC/MS (HS-SPME-GC/MS에 의한 혈액중 17종 유기인계 농약의 동시분석법)

  • Rhee, Jong-Sook;Jung, Jin-Mi;Lee, Han-Sun;Yeom, Hye-Sun;Lee, Sang-Ki;Park, Yoo-Sin;Chung, Hee-Sun
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.429-440
    • /
    • 2010
  • HS-SPME-GC/MS was studied and optimized for the determination of 17 orgarnophosphorous pesiticides (OPPs: chlorpyrifos, chlorpyrifos-methyl, demeton-s-methyl, diazinon, dimethoate, EPN, fenitrothion, fenthion, malathion, methidathion, monocrotophos, parathion, phenthoate, phosphamidon, sulfotep, terbufos, triazophos) in blood. Optimum SPME parameters were selected: choice of SPME fiber (85 ${\mu}m$ polyacrylate), pH effect (0.5 N HCl), salt effect ($Na_2SO_4$, 0.2 g; 20%), headspace incubation temperature ($80^{\circ}C$), headspace incubation time (1 min), headspace adsorption time (30 min) and GC desorption time (2 min). These parameters were optimized using HS-SPME autosampler coupled with gas chromatography-mass spectrometry (GC-MS). Method validation was carried out in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and recovery in blood. The assay was linear over 0.5~5.0 mg/l ($r^2$=0.955~1.000). Limit of detection (LOD) and limit of quantitation (LOQ) in blood were determined 0.03~0.3 mg/l (S/N=3) and 0.1~1.1 mg/l (S/N=10), respectively. Relative recovery with 0.5, 1 and 5 mg/l (in blood) were 90.8%, 98.5% and 94.1%, respectively. This method will be applied to the determination of the orgarnophosphorous pesticides in postmortem blood. The proposed protocol can be an attractive alternative to be used in routine toxicological analysis.

Evaluation of Volatile Compounds Isolated from Pork Loin (Longissimus dorsi) as Affected by Fiber Type of Solid-phase Microextraction (SPME), Preheating and Storage Time

  • Park, Sung-Yong;Yoon, Young-Mo;Schilling, M. Wes;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.579-589
    • /
    • 2009
  • This study was conducted to investigate the effects of heating, fiber type used in solid-phase microextraction (SPME, two phase vs three phase) and storage time on the volatile compounds of porcine M. longissimus dorsi (LD). Volatile compounds were measured using a gas chromatography and mass spectrometry (GC/MS) with a quadrupole mass analyzer. Among the volatile compounds identified, aldehydes (49.33%), alcohols (24.63%) and ketones (9.85%) were higher in pre-heated loins ($100^{\circ}C$/30 min), whereas, alcohols (34.33%), hydrocarbons (22.84%) and ketones (16.88%) were higher in non-heated loins. Heating of loins induced the formation of various volatile compounds such as aldehydes (hexanal) and alcohols. The total contents of hydrocarbons, alcohols, and carboxylic acids were higher in two phase fibers, whereas those of esters tended to be higher in three-phase fibers (p<0.05). Most volatile compounds increased (p<0.05) with increased storage time. Thus, the analysis of volatile compounds were affected by the fiber type, while heating and refrigerated storage of pork M. longissimus dorsi increased the volatile compounds derived from lipid oxidation and amino acid catabolism, respectively.

Analysis of Haloacetic Acids in Drinking Water by Direct Derivatization and Headspace-SPME Technique with GC-MS (Handspace Solid Phase Microextraction 방법에 의한 HAAs 분석에 관한 연구)

  • Cho, Deok-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.638-648
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of haloacetic acid (HAAs). In this study, headspace solid-phase microextraction (HS-SPME) was studied as a possible alternative to liquid-liquid extraction for the analysis of HAAs in drinking water. The method involves direct derivatization of the acids to their methyl esters without methyl tert-butyl ether (MTBE) extraction, followed by HS-SPME with a $2cm-50/30{\mu}m$ divinylbenzene/carboxen/polydimethylsiloxane fiber. The effects of experimental parameters such as selection of SPME fiber, the volume of sulphuric acid and methanol, derivatization temperature and time, the addition of salts, extraction temperature and time, and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The $2cm-50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, sulphuric acid of 1ml, methanol of 3ml, derivatization temperature of $50^{\circ}C$ derivatization time of 2hrs, sodium chloride salt of 10g, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were selected as the optimal experimental conditions for the analysis of HAAs. The linearities ($r^2$), relative standard deviations (%RSD) and limits of detection (LOD) for HAAs were 0.9978~0.9991, 1.1~9.8% and $0.05{\sim}0.2{\mu}g/l$, respectively.