• Title/Summary/Keyword: SPEED REDUCTION

Search Result 2,395, Processing Time 0.031 seconds

An Algorithm for Heavy Duty Truck Priority on Left-turn to Reduce Greenhouse Gas Emissions (온실가스 감축을 위한 대형 화물차 좌회전 우선신호 알고리즘 개발)

  • Yang, Se Jung;Kim, Suhyeon;Kim, Hyo Seung;Lee, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.60-70
    • /
    • 2013
  • This study aims to develop a truck priority on left-turn algorithm that can reduce greenhouse gas emissions by reducing heavy duty truck's stops at signalized intersection. The signal priority is granted for a left-turn phase, because heavy duty trucks can deteriorate left-turn traffic flow due to the low acceleration or deceleration rate and large turn radius. Truck priority allows to provide the stable speed control for heavy duty truck, and reduces emissions at the signal intersection. Also, two signal recovery strategies are compared for various traffic conditions. This study analyzes the effectiveness of truck priority such as greenhouse gas emissions and fuel consumption reduction, and total travel time saving using the PARAMICS and Comprehensive Modal Emissions Model (CMEM). The results show that signal priority for heavy duty trucks has an effect on reducing greenhouse gas emissions and fuel consumptions at non-peak hour. Also, it shows decreasing total travel time due to reducing truck stops.

Design of Pattern Classifier for Electrical and Electronic Waste Plastic Devices Using LIBS Spectrometer (LIBS 분광기를 이용한 폐소형가전 플라스틱 패턴 분류기의 설계)

  • Park, Sang-Beom;Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.477-484
    • /
    • 2016
  • Small industrial appliances such as fan, audio, electric rice cooker mostly consist of ABS, PP, PS materials. In colored plastics, it is possible to classify by near infrared(NIR) spectroscopy, while in black plastics, it is very difficult to classify black plastic because of the characteristic of black material that absorbs the light. So the RBFNNs pattern classifier is introduced for sorting electrical and electronic waste plastics through LIBS(Laser Induced Breakdown Spectroscopy) spectrometer. At the preprocessing part, PCA(Principle Component Analysis), as a kind of dimension reduction algorithms, is used to improve processing speed as well as to extract the effective data characteristics. In the condition part, FCM(Fuzzy C-Means) clustering is exploited. In the conclusion part, the coefficients of linear function of being polynomial type are used as connection weights. PSO and 5-fold cross validation are used to improve the reliability of performance as well as to enhance classification rate. The performance of the proposed classifier is described based on both optimization and no optimization.

A Study on Resisitance Performance of the Straight-Framed V-Bottom Hull Forms with High Displacement-Length Ratio (고(高) 배수량일장(排水量一長) 비(比) V-형(型) 직선늑골선형(直線肋骨船型)의 추진저항성능(推進抵抗性能)에 관(關)하여)

  • Kyu-Jong,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 1969
  • From viewpoints of over-all ship economy the straight framed V-bottom hull forms with chines are considered to be attractive even for usual commercial vessels, because increments of resistance over that of round hull forms, if any, can be well compensated with reduction in construction cost.[1] To investigate the influences of both prismatic coefficient and chine elevation on resistance performance, three models of straight-framed V-bottom hull forms which are similar to Prof. C. Ridgely-Nevitt's W-18, W-8, and W-20[2],[3] in size and hull form coefficients were tested at the SNU Ship Model Towing Tank for resistance measurements. They are of Cp=0.60, 0.65 and 0.70 and of ${\Delta}/(0.01L)^3=300$. Influence of variation of chine elevation on resistance performance were observed with the test results obtained at normal condition, and at the trimed by the stern by 2% and 4% of $L_{bp}$ at normal condition under same displacement. The hull form characteristics are shown in Table 1, and in Fig. 1, 2, 3, 4 and 5. The test results are shown in Fig 8, 9 and 10 in the form of Cr vs. $V/\sqrt{L}$ curves taking Cp as a parameter for normal condition, trim by the stern in 2% and 4% $L_{bp}$ at normal condition , respectively. Cr vs. $V/\sqrt{L}$ curves taking trim condition as a parameter are also shown in Fig 11, 12 and 13 for Cp=0.60 and 0.70, respectively. The best and the worst trim condition at given $V/\sqrt{L}$ in viewpoint of Cr are plotted for each Cp-value as shown in Fig 14, 15 and 16. From the above results the following conclusions are derived: (1) In general, the resistance performance of the straight-framed V-bottom hull forms are not inferior to those of round hull forms. At a certain range of $V/\sqrt{L}$ the former gives less resistance than the latter. (2) Regarding influences of Cp on Cr, it is observed that, at $V/\sqrt{L}$ less than about 0.925, the greater Cp-value gives the more increment of Cr, and that, at $V/\sqrt{L}$ greater than about 0.925 the smaller Cp-value gives the more increment of Cr. It is also noteworthy that the model of Cp=0.70 has remarkable hump on Cr vs. $V/\sqrt{L}$ curve between $V/\sqrt{L}=0.80$ and 0.90. (3) For higher speed within the test range, the chine elevation having the steeper slope around bow and the easier slope around amidship and stern, refered to watering, give the better results in resistance performance. (4) Assuming the chine elevations adopted for the tested models were not of the best, we would expect further improvement of resistance performance for such form. Hence, a systematic study on chine elevation is very disirable to prepare design data of general purpose for the such hull forms.

  • PDF

An empirical model of air bubble size for the application to air masker (에어마스커의 기포크기 추정 경험적 모델)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Park, Youngha;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.320-329
    • /
    • 2021
  • In this paper, an empirical model of air bubble size to be applied to an air masker for reduction of underwater radiation noise is presented. The proposed model improves the divergence problem under the low-speed flow condition of the existing model derived using Rayleigh's jet instability model and simple continuity condition by introducing a jet flow velocity of air. The jet flow velocity of air is estimated using the bubble size where the liquid is quiescent. In a medium without flow, the size of the bubble is estimated by an empirical method where bubble formation regime is divided into a laminar-flow range, a transition range, and a turbulent-flow range based on the Reynolds number of the injected air. The proposed bubble size model is confirmed to be in good agreement with the Computational Fluid Dynamics (CFD) analysis result and the experimental results of the existing literature. Using the acoustic inversion method, the air bubble population is estimated from the insertion loss measured during the air injection experiment of the air- masker model in a large cavitation tunnel. The results of the experiments and the bubble size model are compared in the paper.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

Influence of the Amount of Conductive Paste on the Electrical Characteristics of c-Si Photovoltaic Module (전도성 페이스트 도포량 변화에 따른 결정질 태양광 모듈의 전기적 특성에 대한 영향성 분석)

  • Kim, Yong Sung;Lim, Jong Rok;Shin, Woo Gyun;Ko, Suk-Whan;Ju, Young-Chul;Hwang, Hye Mi;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.720-726
    • /
    • 2019
  • Recently, research on cost reduction and efficiency improvement of crystalline silicon(c-Si) photovoltaic(PV) module has been conducted. In order to reduce costs, the thickness of solar cell wafers is becoming thinner. If the thickness of the wafer is reduced, cracking of wafer may occur in high temperature processes during the c-Si PV module manufacturing process. To solve this problem, a low temperature process has been proposed. Conductive paste(CP) is used for low temperature processing; it contains Sn57.6Bi0.4Ag component and can be electrically combined with solar cells and ribbons at a melting point of $150^{\circ}C$. Use of CP in the PV module manufacturing process can minimize cracks of solar cells. When CP is applied to solar cells, the output varies with the amount of CP, and so the optimum amount of CP must be found. In this paper, in order to find the optimal CP application amount, we manufactured several c-Si PV modules with different CP amounts. The amount control of CP is fixed at air pressure (500 kPa) and nozzle diameter 22G(outer diameter 0.72Ø, inner 0.42Ø) of dispenser; only speed is controlled. The c-Si PV module output is measured to analyze the difference according to the amount of CP and analyzed by optical microscope and Alpha-step. As the result, the optimum amount of CP is 0.452 ~ 0.544 g on solar cells.

Design of EMI Reduction of SMPS Using MLCC Filters (MLCC를 이용한 SMPS의 EMI 저감 설계)

  • Choi, Byeong-In;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.97-105
    • /
    • 2020
  • Recently, as the data speed and operating frequencies of Ethernet keeps increasing, electro magnetic interference (EMI) also becomes increasing. The generation of such EMI will cause malfunction of near electronic devices. In this study, EMI filters were applied to reduce the EMI generated by DC-DC SMPS (switching mode power supply), which is the main cause of EMI generation of Ethernet switch. As the EMI filter, MLCCs with excellent withstanding voltage characteristics were used, which had advantages in miniaturization and mass production. Two types of EMI MLCC filters were used, which are X-capacitor and X, Y-capacitor. X-capacitor was composed of 2 MLCCs with 10 nF and 100 nF capacity and 1 Mylar capacitor. Y-capacitor was consisted of 6 MLCCs with a capacity of 27 nF. When only X-capacitor was applied as EMI filter, the conductive EMI field strength exceeded the allowable limit in frequency range of 150 kHz ~ 30 MHz. The radiative EMI also showed high EMI strength and very small allowable margin at the specific frequencies. When the X and Y-capacitors were applied, the conductive EMI was greatly reduced, and the radiation EMI was also found to have sufficient margin. In addition, X, Y-capacitors showed very high insulation resistance and withstanding resistance performances. In conclusion, EMI X, Y-capacitors using MLCCs reduced the EMI noise effectively and showed excellent electrical reliability.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.