• 제목/요약/키워드: SPECT (Single photon emission computed tomography)

검색결과 128건 처리시간 0.021초

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.

Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4591-4596
    • /
    • 2023
  • Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.

Preclinical evaluation using functional SPECT imaging of 123I-metaiodobenzylguanidine (mIBG) for adrenal medulla in normal mice

  • Yiseul Choi;Hye Kyung Chung;Sang Keun Woo;Kyo Chul Lee;Seowon Kang;Seowon Kang;Joo Hyun Kang;Iljung Lee
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.93-98
    • /
    • 2021
  • meta-iodobenzylguanidine is one of the norepinephrine analogs and reuptakes together with norepinephrine with norepinephrine transporter. The radioiodinated ligand, 123I-meta-iodobenzylguanidine, is the most widely used for single photon emission computed tomography imaging to diagnose functional abnormalities and tumors of the sympathetic nervous system. In this study, we performed cellular uptake studies of 123I-meta-iodobenzylguanidine in positive- and negative-norepinephrine transporter cells in vitro to verify the uptake activity for norepinephrine transporter. After 123I-meta-iodobenzylguanidine was injected via a tail vein into normal mice, Single photon emission computed tomography/computed tomography images were acquired at 1 h, 4 h, and 24 h post-injection, and quantified the distribution in each organ including the adrenal medulla as a norepinephrine transporter expressing organ. In vitro cell study showed that 123I-meta-iodobenzylguanidine specifically uptaked via norepinephrine transporter, and significant uptake of 123I-meta-iodobenzylguanidine in the adrenal medulla in vivo single photon emission computed tomography images. These results demonstrated that single photon emission computed tomography imaging with 123I-meta-iodobenzylguanidine were able to quantify the biodistribution in vivo in the adrenal medulla in normal mice.

Early-Phase SPECT/CT for Diagnosing Osteomyelitis: A Retrospective Pilot Study

  • Soo Jin Lee;Kyoung Sook Won;Hyung Jin Choi;Yun Young Choi
    • Korean Journal of Radiology
    • /
    • 제22권4호
    • /
    • pp.604-611
    • /
    • 2021
  • Objective: The aim of this pilot study was to investigate the potential of early-phase single-photon emission computed tomography (SPECT)/computed tomography (CT) using technetium-99m methyl diphosphonate (99mTc-MDP) for diagnosing osteomyelitis (OM). Materials and Methods: Twenty-one patients with suspected OM were enrolled retrospectively. Three-phase bone scan (TPBS), early-phase SPECT/CT (immediately after blood pool planar imaging), and delayed-phase SPECT/CT (immediately after delayed planar imaging) were performed. The final diagnoses were established through surgery or clinical follow-up for over 6 months. We compared three diagnostic criteria based on (I) TPBS alone, (II) combined TPBS and delayed-phase SPECT/CT, and (III) early-phase SPECT/CT alone. Results: OM was diagnosed in 11 of 21 patients (nine surgically and two clinically). Of the 11 OM patients, criterion-I, criterion-II, and criterion-III were positive in six, seven, and 10 patients, respectively. Of the 10 non-OM patients, criterion-I, criterion-II, and criterion-III were negative in five, five, and seven patients, respectively. The sensitivity/specificity/accuracy of criterion-I, criterion-II, and criterion-III for diagnosing OM were 54.5%/50.0%/55.0%, 63.6%/50.0%/57.1%, and 90.9%/70.0%/87.5%, respectively. Conclusion: This pilot study demonstrated the potential of using the early-phase SPECT/CT to diagnose OM. Based on the results, prospective studies with a larger sample size should be conducted to confirm the efficacy of early-phase SPECT/CT.

영아연축에서 추적자의 느린 점적주사를 이용한 발작기 SPECT (Ictal single-photon emission computed tomography with slow dye injection for determining primary epileptic foci in infantile spasms)

  • 허윤정;이준수;강훈철;박해정;윤미진;김흥동
    • Clinical and Experimental Pediatrics
    • /
    • 제52권7호
    • /
    • pp.804-810
    • /
    • 2009
  • 목 적 : 영아연축은 이차성 전신간질중의 하나로 간질 병소를 발견하기 힘든 질환중의 하나이다. 이에 저자들은 $^{99m}Tc-ECD$ 추적자의 느린 점적 주사를 이용한 발작기 SPECT를 통하여 영아 연축 환아에서 간질 병소를 찾아보고자 하였다. 방 법 : 2005년 3월부터 2007년 2월까지 연세대학교 의과대학 소아과에 내원한 영아 연축 14명의 환아를 대상으로 첫 연축이 발생하는 시점에 $^{99m}Tc-ECD$ 를 2분에 걸쳐 천천히 같은 속도로 주입하였다. 발작간기와 발작기 간의 SPECT 의 차이를 비교하였으며 객관적인 비교를 위하여 SISCOM기법을 사용하였다. 또한 간질 병소를 발견할 수 있는 진단기법인 뇌파, 자기공명영상, 양전자단층촬영(PET) 등과 비교 분석하였다. 결 과 : 전체 14례의 추적자의 느린 점적 주사를 이용한 발작기 SPECT 중 10례에서 간질 병소의 혈류가 증가하였다. 비디오 뇌파와 발작기 SPECT에서 간질병소의 일치율은 Kappa=0.57, 95% confidence interval: 0.18-0.96로 높게 나왔다. 이 중 6례에서 발작기 SPECT와 비디오 뇌파에 근거하여 간질 수술을 시행하였으며 수술적 예후가 Engle class I으로 좋은 결과를 보였다. 결 론 : 추적자의 느린 점적 주사를 이용한 발작기 SPECT는 간질 병소를 찾기 어려운 영아 연축 환아에서 간질 병소를 찾아내는데 중요한 역할을 하는 것을 알 수 있었다. 그러나 보다 큰 규모의 전향적인 연구가 필요할 것으로 사료된다.

단일광자방출 전산화단층촬영상에서 재구성 필터에 의한 정량화 오차에 관한 연구 (A Study on the Quantification Error due to the Reconstruction Filters in Single Photon Emission Computed Tomography(SPECT))

  • 곽철은;정준기
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권1호
    • /
    • pp.43-48
    • /
    • 1991
  • As the computerized methods and equipments In nuclear medicine imaging increases, quantitative information is needed on the single photon emission computed tomographic Images as well as on the conventional nuclear medicine images. In this paper, the authors investigated the effect of several clinician - friendly reconstrution filters on the resultant transverse slices of backprojected Profiles of radioisotope distribution from the Quantitative point of view, and reduced the filter parameters such as cutoff frequency and order of filter which are neces mary to minimize the quantification error using computer-generated phantoms.

  • PDF

Experimental study of noise level optimization in brain single-photon emission computed tomography images using non-local means approach with various reconstruction methods

  • Seong-Hyeon Kang;Seungwan Lee;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1527-1532
    • /
    • 2023
  • The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.

도파민과 세로토닌 운반체 및 수용체 영상을 위한 방사성리간드 (Radioligands for Imaging Dopamine and Serotonin Receptors and Transporters)

  • 지대윤
    • 대한핵의학회지
    • /
    • 제34권3호
    • /
    • pp.159-168
    • /
    • 2000
  • In the 1980s, techniques to image the human subjects in a three-dimensional direction were developed. Two major techniques are SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) which allow the detector to detect a single photon or annihilation photons emitted from the subjects injected with radiopharmaceuticals. Since the latter two techniques can measure the density of receptors, enzymes and transporters in living human, it may be very important project to develop selective methods of labeling with radionuclides and to develop new radiopharmaceuticals. There has been a considerable interest in developing new compounds which specifically bind to dopamine and serotonin receptor and transporters, and it will be thus very useful to label those compounds with radionuclides in order to gain a better understanding in biochemical and pharmacological interactions in living human. This review mentions the characteristics of radioligands for the imaging of dopamine and serotonin receptors and transporters. Although significant progress has been achieved in the development of new PET and SPECT ligands for in vivo imaging of those receptors and transporters, there are continuous needs of new diagnostic radioligands.

  • PDF

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.