• Title/Summary/Keyword: SPAN

Search Result 5,028, Processing Time 0.032 seconds

Eigenvalue Analysis of Double-span Timoshenko Beams by Pseudo spectral Method

  • Lee, Jin-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1753-1760
    • /
    • 2005
  • The pseudo spectral method is applied to the free vibration analysis of double-span Timoshenko beams. The analysis is based on the Chebyshev polynomials. Each section of the double-span beam has its own basis functions, and the continuity conditions at the intermediate support as well as the boundary conditions are treated separately as the constraints of the basis functions. Natural frequencies are provided for different thickness-to-length ratios and for different span ratios, which agree with those of Euler-Bernoulli beams when the thickness-to-length ratio is small but deviate considerably as the thickness-to-length ratio grows larger.

Comparison of single-span plastic greenhouse in Korea and high tunnel in North America (우리나라 단동 비닐하우스와 북미지역 하이터널의 비교)

  • Nam, Sang-Woon;Both, Arend-Jan
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.505-512
    • /
    • 2011
  • Structural characteristics for standard models of single-span plastic greenhouse in Korea and high tunnels in North America were analyzed, and comparative analysis for greenhouse environments measuring in Korean farmhouse and Rutgers high tunnel was carried out to find structural and environmental improvements of single-span plastic greenhouses that occupy most of Korean greenhouse. Widths of high tunnels are similar to single-span plastic greenhouses but their heights are high comparatively and their side heights are fairly higher than single-span plastic greenhouses specially. Rafters, which are main frames, section sizes of high tunnels are bigger and their intervals are wider than single-span plastic greenhouses. Relative bending resistances compared with representative Korean greenhouse were analyzed by 0.92 to 1.42 in single-span plastic greenhouses, and 1.38 to 2.96 in high tunnels. Frame ratios of single-span plastic greenhouses were 6.8 to 8.6%, and those of high tunnels were 5.5 to 8.7%. We analyzed air temperatures and solar radiations measured in single-span plastic greenhouse and high tunnel on clear days in late March. There were outside temperatures in generally similar range, and judging by rise of indoor temperatures, ventilation performance of high tunnel is more excellent than single-span plastic greenhouse. Solar radiations of two areas were no big difference but light transmittance of high tunnel was a little bit higher than single-span plastic greenhouse. Single-span plastic greenhouses are disadvantageous in environmental managements such as ventilation performance and light transmittance because distance between greenhouses is too narrow and length of greenhouse is too long compared to high tunnels. To get the environmental improvement effects as well as to increase the structural resistance of single-span plastic greenhouses are achievable by widening the width of greenhouse in possible range, widening the space between rafters, and enlarging the section size of rafters. Also, we need to secure enough distance between greenhouses and to restrict the length of greenhouse by maximum 50 m in order to improve the ventilation performance and the light transmittance.

Effects of Expansion of Sleeper Span at the Deck End of a Long Continuous Bridge on Train Safety and Track Stability (장대교량 신축부에서 침목간격 확대가 차량의 주행안전성 및 궤도의 구조안정성에 미치는 영향)

  • Yang, Sin-Chu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.620-627
    • /
    • 2015
  • Long continuous bridge deck can become contracted considerably as temperature drops, which can lead to a large expansion of sleeper span at the end of it. Since this huge sleeper span then can cause problems both with safety of train operation and structural stability of tracks, it is necessary to take the issue into consideration systematically in the designing process of the bridge. In this paper, an evaluation process through the analysis of train-track interaction was presented which can basically review the effects of the expansion of sleeper span at the end of long continuous bridge deck on the safety of the train and the structural stability of the track. The analyses of the interaction between the light rail train and tracks were carried out targeting the sleeper span as a main parameter. The safety of train operation and structural stability of tracks in a light rail system due to the expansion of the sleeper span were evaluated by comparing the numerical results with the related criteria.

Vibration analysis of a multi-span beam subjected to a moving point force using spectral element method

  • Jeong, Boseop;Kim, Taehyun;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, we propose a frequency domain spectral element method (SEM) for the vibration analysis of a multi-span beam subjected to a moving point force. This study is an extension of the authors' previous study for a single-span beam subjected to a moving point force, where the two-element model-based SEM was applied. In this study, each span of a multi-span beam is represented by the Timoshenko beam model and the moving point force is transformed into the frequency domain as a series of each stationary point force distributed on the multi-span beam. The span at which a stationary point force is located is represented by two-element model, but all other spans are represented by one-element models. The vibration responses to a moving point force are obtained by superposing all individual vibration responses generated by each stationary point force. The high accuracy and computational efficiency of the proposed SEM are verified by comparing the solutions by SEM with exact analytical solutions by the integral transform method (ITM) as well as the solutions by the finite element method (FEM).

Analysis of the Characteristics of Peak External Pressure Coefficient Working on Roof Surface according to the Shape and Layout of Green Houses (비닐하우스의 형태와 배치에 따른 지붕면 피크외압계수 특성분석)

  • You, Ki-Pyo;Paek, Sun-Young;Kim, Young-Moom
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2010
  • Among the protected horticulture facilities in Korea, 99.2% are pipe-framed green houses and most of them are structurally vulnerable single-span type green houses. This study examined peak external pressure coefficient for the roof surface of a green house group composed of single-span and a multiple-span green houses. According to the results of the experiment, the distribution of peak external pressure coefficient was around 30% higher in the single-span greenhouse than in the multi-span ones. The external pressure coefficient for the roof surface of the vinyl house group was, in all of the three vinyl houses, was around 20%-30% higher than that for single-span greenhouses.

  • PDF

40 Gbps RZ Transmission Using Dispersion Compensation of Single-Span in Optical Transmission Links with Multi-Span of Single Mode Fiber

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • In dispersion management (DM) and optical phase conjugation applied into optical transmission links with multi fiber spans for minimizing the impact of nonlinearity and group velocity (GVD), implementation possibility of DM using only one fiber span for pre- or postcompensation was assessed as a function of duty cycle of RZ pulse and residual dispersion per span (RDPS). It is confirmed that DM with optimal net residual dispersion (NRD) controlled by only one fiber span could be sufficiently applied into optical transmission links, though optimal NRD is more increased than that in transmission links with the general DM scheme of pre- and postcompensation. Thus, it is expected that optical transmission system is simply designed and implemented by applying the proposed DM scheme into real optical transmission links. Also, it is confirmed that the advantageous duty cycle of RZ is 0.5 and RDPS is setting to be small value for the effective transmitting wide signal wavelength range in optical links with optimal NRD controlled by only one fiber span.

A Modeling of Residential Mobility over Family Life Span by the Social Class (사회 계층에 따른 가족생활주기별 주거이동모형 연구)

  • 윤복자
    • Journal of the Korean Home Economics Association
    • /
    • v.30 no.4
    • /
    • pp.153-165
    • /
    • 1992
  • The objectives of this study were to develop a probabilistic model for both hypotheses testing and mobility prediction. Methodologies being used for the analysis include multivariated analysis for descriptive statistics and logit model for hypotheses testing and prediction. The study used questionaire survey data conducted by Korean Research Institute for Human Settlements (KRIHS) in 1988. There were a total of 1,620 Samples, and both SPSS and Limdep software packages were used for statistical analysis and model testing. The major findings were highlighted as follows; The residential mobility over family life span by the social class were developed with the use of the probability model. Most of households in low class moved downwardly. They had lived the small-owned single detached house in first family life span and moved into the small-rented single detached house in next family life span. Most of households in middle class moved upwardly. They had lived the small-owned apartment in first family life span and moved into the large-owned single detached house in last family life span. Most of households in high class horizontally. They had lived the large-owned single detached house in first family life span and moved into the same one except in last family life span.

  • PDF

Analysis of the Contact Wire Wear Pattern According to the Pre-sag (사전이도에 따른 전차선 마모 패턴 분석)

  • Lee, In-Hee;Park, Jae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1501-1507
    • /
    • 2015
  • The contact wire pre-sag in railway overhead catenary has been considered as a innovative idea which improves the current collection quality and is expected to evenly distribute wear along a span. However, long term studies on the effects of pre-sag, especially on the quantitative wear pattern of the contact wire, have not yet been reported. Therefore, in this study, the pre-sag and wear pattern of the contact wire along a span from long term operation of railway in Korea was surveyed. The examination was conducted on 3 lines, the Gyeongbu high-speed line with pre-sag of span/2000, the Gyeongbu existing line without pre-sag, and Gyeongchun line with pre-sag installation on 1/1000 of its span. The wear measurements of 58 sample spans were examined. The wear pattern analysis show no interrelationships between pre-sag and evenly distributed wear, but more wear occurred at the center of a span compared to the ends of the span, especially more noticeable as span length increases.

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.