• Title/Summary/Keyword: SPACE-R

Search Result 3,014, Processing Time 0.022 seconds

Thermal Analysis of MIRIS Space Observation Camera for Verification of Passive Cooling

  • Lee, Duk-Hang;Han, Won-Yong;Moon, Bong-Kon;Park, Young-Sik;Jeong, Woong-Seob;Park, Kwi-Jong;Lee, Dae-Hee;Pyo, Jeong-Hyun;Kim, Il-Joong;Kim, Min-Gyu;Matsumoto, Toshio
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • We conducted thermal analyses and cooling tests of the space observation camera (SOC) of the multi-purpose infrared imaging system (MIRIS) to verify passive cooling. The thermal analyses were conducted with NX 7.0 TMG for two cases of attitude of the MIRIS: for the worst hot case and normal case. Through the thermal analyses of the flight model, it was found that even in the worst case the telescope could be cooled to less than $206^{\circ}K$. This is similar to the results of the passive cooling test (${\sim}200.2^{\circ}K$). For the normal attitude case of the analysis, on the other hand, the SOC telescope was cooled to about $160^{\circ}K$ in 10 days. Based on the results of these analyses and the test, it was determined that the telescope of the MIRIS SOC could be successfully cooled to below $200^{\circ}K$ with passive cooling. The SOC is, therefore, expected to have optimal performance under cooled conditions in orbit.

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.

Space-time cluster research of R&D industry in Seoul, Korea (서울시 R&D 산업체의 시공간 클러스터 분석)

  • Park, Sun-Young;Kim, Youngho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.492-511
    • /
    • 2013
  • According to IASB(International Accounting Standards Board), R&D(Research and Development) is defined as a tertiary sector industry combining research and development. Many studies investigated R&D industry clusters in the form of high-tech cluster(Coe et al., 2007). However, these studies only generalized various spatial cluster of R&D industries. In particular, the studies could not considers cluster formation process over time lacking statistical significance in space-time perspectives. This study, therefore, indicates the limitation of recent R&D cluster literature which only considers either time or space. In addition, this study explores space-time clusters in R&D industry together with textile and cloth industry for comparison. Discovering the existence and location of clusters, this study utilized space-time K function and space-time scan statistics. The result shows that R&D industry presents significant clusters only in spatial dimension. No significant clusters were found in space-time dimension. However, textile and clothing industry presents significant clusters in both spatial and space-time dimensions.

  • PDF

CHARACTERIZATION OF THE MULTIPLIERS FROM Ḣr TO Ḣ-r

  • Gala, Sadek;Sawano, Yoshihiro
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.915-928
    • /
    • 2013
  • In this paper, we will provide an alternative proof to characterize the pointwise multipliers which maps a Sobolev space $\dot{H}^r(\mathb{R}^d)$ to its dual $\dot{H}^{-r}(\mathb{R}^d)$ in the case 0 < $r$ < $\frac{d}{2}$ by a simple application of the definition of fractional Sobolev space. The proof relies on a method introduced by Maz'ya-Verbitsky [9] to prove the same result.

LINEAR MAPPINGS, QUADRATIC MAPPINGS AND CUBIC MAPPINGS IN NORMED SPACES

  • Park, Chun-Gil;Wee, Hee-Jung
    • The Pure and Applied Mathematics
    • /
    • v.10 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • It is shown that every almost linear mapping $h{\;}:{\;}X{\;}{\rightarrow}{\;}Y$ of a complex normed space X to a complex normed space Y is a linen. mapping when h(rx) = rh(x) (r > 0,$r\;{\neq}\;1$$x{\;}{\in}{\;}X$, that every almost quadratic mapping $h{\;}:{\;}X{\;}{\rightarrow}{\;}Y$ of a complex normed space X to a complex normed space Y is a quadratic mapping when $h(rx){\;}={\;}r^2h(x){\;}(r{\;}>{\;}0,r\;{\neq}\;1)$ holds for all $x{\;}{\in}{\;}X$, and that every almost cubic mapping $h{\;}:{\;}X{\;}{\rightarrow}{\;}Y$ of a complex normed space X to a complex normed space Y is a cubic mapping when $h(rx){\;}={\;}r^3h(x){\;}(r{\;}>{\;}0,r\;{\neq}\;1)$ holds for all $x{\;}{\in}{\;}X$.

  • PDF

NOTE ON THE FUZZY PROXIMITY SPACES

  • Park, Kuo-Duok
    • Korean Journal of Mathematics
    • /
    • v.10 no.2
    • /
    • pp.131-140
    • /
    • 2002
  • This paper is devoted to the study of the role of fuzzy proximity spaces. We define a fuzzy K-proximity space, a fuzzy R-proximity space and prove some of its properties. Furthermore, we discuss the topological structure based on these fuzzy K-proximity and fuzzy R-proximity.

  • PDF

Spatial Join based on the Transform-Space View (변환공간 뷰를 기반으로한 공간 조인)

  • 이민재;한욱신;황규영
    • Journal of KIISE:Databases
    • /
    • v.30 no.5
    • /
    • pp.438-450
    • /
    • 2003
  • Spatial joins find pairs of objects that overlap with each other. In spatial joins using indexes, original-space indexes such as the R-tree are widely used. An original-space index is the one that indexes objects as represented in the original space. Since original-space indexes deal with sizes of objects, it is difficult to develop a formal algorithm without relying on heuristics. On the other hand, transform-space indexes, which transform objects in the original space into points in the transform space and index them, deal only with points but no sites. Thus, spatial join algorithms using these indexes are relatively simple and can be formally developed. However, the disadvantage of transform-space join algorithms is that they cannot be applied to original-space indexes such as the R-tree containing original-space objects. In this paper, we present a novel mechanism for achieving the best of these two types of algorithms. Specifically, we propose a new notion of the transform-space view and present the transform-space view join algorithm(TSVJ). A transform-space view is a virtual transform-space index based on an original-space index. It allows us to interpret on-the-fly a pre-built original-space index as a transform-space index without incurring any overhead and without actually modifying the structure of the original-space index or changing object representation. The experimental result shows that, compared to existing spatial join algorithms that use R-trees in the original space, the TSVJ improves the number of disk accesses by up to 43.1% The most important contribution of this paper is to show that we can use original-space indexes, such as the R-tree, in the transform space by interpreting them through the notion of the transform-space view. We believe that this new notion provides a framework for developing various new spatial query processing algorithms in the transform space.

Space Group $R\={3}c$ = $R\={3}2/c$(167) and the Crystal Structure of Tris(1,2,3,4-tetraphenylbuta-1,3-dienyl)cyclotriphosphazene (Space Group $R\={3}c$(167)과 Tris(1,2,3,4-tetraphenylbuta-1,3-dienyl)cyclotriphosphazene의 結晶構造)

  • Kim, Young-Sang;Ko, Jae-Jung;Kang, Sang-Ook;Lee, Young-Joo;Kang, Eu-Gene;Han, Won-Sik;Park, Young-Soo;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2004
  • There are 25 space groups in the trigonal system. Eighteen out of them have a lattice letter P displaying only hexagonal axes, wherease the remaining seven rhombohedral space groups R3(146), $R\={3}$(148), R32(155), R3m(160), R3c(161), $R\={3}m$(166) and $R\={3}c$(167) are described with two corrdinate systems, first with hexagonal axes having three lattice points (0, 0, 0), (2/3, 1/3, 1/3), (1/3, 2/3, 2/3) and second with primitive rhombohedral axes. In this paper, the space group $R\={3}c$ is discussed and the crystal structure of a compound, tris(1,2,3,4-tetraphenylbuta-1,3-dienyl)cyclotriphosphazene, $C_{84}H_{60}N_3P_3$, belonging to the space group $R\={3}c$ is elucidated with both hexagonal and rhombohedral cells.

Duality of Paranormed Spaces of Matrices Defining Linear Operators from 𝑙p into 𝑙q

  • Kamonrat Kamjornkittikoon
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.235-250
    • /
    • 2023
  • Let 1 ≤ p, q < ∞ be fixed, and let R = [rjk] be an infinite scalar matrix such that 1 ≤ rjk < ∞ and supj,k rjk < ∞. Let 𝓑(𝑙p, 𝑙q) be the set of all bounded linear operator from 𝑙p into 𝑙q. For a fixed Banach algebra 𝐁 with identity, we define a new vector space SRp,q(𝐁) of infinite matrices over 𝐁 and a paranorm G on SRp,q(𝐁) as follows: let $$S^R_{p,q}({\mathbf{B}})=\{A:A^{[R]}{\in}{\mathcal{B}}(l_p,l_q)\}$$ and $G(A)={\parallel}A^{[R]}{\parallel}^{\frac{1}{M}}_{p,q}$, where $A^{[R]}=[{\parallel}a_{jk}{\parallel}^{r_{jk}}]$ and M = max{1, supj,k rjk}. The existance of SRp,q(𝐁) equipped with the paranorm G(·) including its completeness are studied. We also provide characterizations of β -dual of the paranormed space.