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CHARACTERIZATION OF THE MULTIPLIERS

FROM
.

H
r

TO
.

H
−r

Sadek Gala and Yoshihiro Sawano

Abstract. In this paper, we will provide an alternative proof to char-

acterize the pointwise multipliers which maps a Sobolev space
.

H
r (

R
d
)

to its dual
.

H
−r (

R
d
)

in the case 0 < r <
d

2
by a simple application of

the definition of fractional Sobolev space. The proof relies on a method
introduced by Maz’ya-Verbitsky [9] to prove the same result.

1. Introduction

In the present paper we aim to prove the following result on the multiplier

space M(
.

H
r
(Rd) →

.

H
−r

(Rd)), where
.

H
r (

R
d
)
and

.

H
−r (

R
d
)
are the (stan-

dard) homogeneous Sobolev spaces, d ≥ 3. Based upon [4] and [7], we recall

the definition of the multiplier space M(
.

H
r
(Rd) →

.

H
−r

(Rd)): Recall that this
is defined by

M

(
.

H
r (

R
d
)
→

.

H
−r (

R
d
))

=

{
f ∈ S ′

(
R

d
)
: sup

g∈S(Rd)

‖fg‖ .

H
−r

‖g‖ .

H
r

<∞

}
,

where S
(
R

d
)
denotes the Schwartz class space of rapidly decreasing smooth

functions, so that S ′
(
R

d
)
is the space of tempered distributions.

Hereafter,
.

Xr

(
R

d
)
, 0 ≤ r < d

2 , denotes the space of functions, which are

locally square integrable on R
d and such that pointwise multiplication with

these functions maps boundedly
.

H
r (

R
d
)
to L2

(
R

d
)
, i.e.,

.

Xr

(
R

d
)
=
{
f ∈ L2

loc

(
R

d
)
: ∀g ∈

.

H
r (

R
d
)
fg ∈ L2

(
R

d
)}
.

The norm of
.

Xr is given by the operator norm of pointwise multiplication:

‖f‖ .

Xr
= sup

‖g‖Hr≤1

‖fg‖L2 .

Our main theorem reads as follows:
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Theorem 1. Let d ≥ 3 and 0 < r < d
2 . Assume f ∈ D′

(
R

d
)
satisfies F :=

(−∆)−
r
2 f ∈

.

Xr

(
R

d
)
. Then

f ∈
.

Zr

(
R

d
)
= M

(
.

H
r (

R
d
)
→

.

H
−r (

R
d
))

and the estimate

‖f‖ .

Zr
≤ C ‖F‖ .

Xr

holds.

The precise definition of (−∆)
r
2 is given in Section 2. As an immediate

consequence we have by setting Λ = (−∆)
1
2 .

Corollary 1. Let d ≥ 3 and 0 < r < d
2 . Suppose that f ∈ D′

(
R

d
)
is such that

g = (−∆)−
r
2 f ∈

.

Xr

(
R

d
)
. Then

Λrg ∈
.

Zr

(
R

d
)

and

‖Λrg‖ .

Zr
≤ C ‖g‖ .

Xr
,

where the constant C is independent of g.

Remark 1. The proof for r = 1 relies on potential theory and uses some fine
properties of equilibrium measures (see [8]). As far as we know, the case of
r 6= 0 and r 6= 1 is still open (see e.g. [4]).

The motivation of investigating Żr lies in investigating the partial differential
equations. Especially, when it comes to partial differential equations with non-
constant coefficients, such spaces arise naturally. Another motivation is in
potential analysis. Let M+

(
R

d
)
be the class of positive Borel measures on R

d,

finite on compact sets and µ ∈ M+
(
R

d
)
. The inequality

∫

Rd

|h(x)|
2
dµ(x) ≤ C ‖∇h‖

2
L2(Rd) , h ∈ C∞

0

(
R

d
)

is called the trace inequality (see [3], [7]). It is by now well known that in-
equalities of this type become extremely important in various areas of analysis
including harmonic analysis and partial differential equations since it is closely
connected with spectral properties of Schrödinger operators (see, e.g., [1], [3],
[9]) and lead to deep applications in partial differential equations (see, e.g.,
[7]), in studying eigenvalues of Schrödinger operators [11] and in the theory of
Sobolev spaces [5], [6].
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2. The function space Żr(R
d)

In what follows Ff denotes the Fourier transform of a function f in the
Schwartz class S

(
R

d
)
defined by

Ff(ξ) =

∫

Rd

f(x)e−ixξdx, ξ ∈ R
d

and F−1 the inverse Fourier transform

F−1f(ξ) = (2π)
−d

Ff(−ξ).

Sometimes Ff will be denoted by f̂ .

Definition 1. For 0 < r < d
2 , we define the homogeneous Sobolev space

.

H
r (

R
d
)
as the closure of S

(
R

d
)
for the norm

‖f‖ .

H
r = (2π)−

d
2

∥∥∥|ξ|r f̂(ξ)
∥∥∥
L2
.

We then have the following dense embeddings

S
(
R

d
)
⊂

.

H
r (

R
d
)
⊂ S ′

(
R

d
)
.

Recall that
.

H
r (

R
d
)
is a Hilbert space with inner product

〈f, g〉 .

H
r =

∫

Rd

|ξ|
2r
f̂(ξ)ĝ(ξ)dξ.

Moreover, the scalar product in L2
(
R

d
)
allows one to identify

.

H
−r (

R
d
)
to the

dual space of
.

H
r (

R
d
)
: using the Plancherel formula

∫

Rd

f(x)g(x)dx = (2π)−d
∫

Rd

f̂(ξ)ĝ(ξ)dξ,

we get that

.

H
−r (

R
d
)
=
{
f ∈ S ′

(
R

d
)
| ∃C ≥ 0, ∀g ∈ S

(
R

d
)
: |〈f, g〉| ≤ C ‖g‖ .

H
r

}

and

‖f‖ .

H
−r = sup

g∈S

|〈f, g〉|

‖g‖ .

H
r

.

Finally, we quote the following well-known Sobolev inequalities: for r ∈ [0, d2 [

and 1
p = 1

2 − r
d , there exists a constant Cr > 0 such that for all ϕ ∈ S

(
R

d
)
,

‖ϕ‖Lp ≤ Cr ‖ϕ‖ .

H
r .

We now check that the product between a distribution in
.

H
r (

R
d
)
and a

distribution in
.

H
−r (

R
d
)
is well defined as distribution in S ′

(
R

d
)
.
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Lemma 1 ([4]). Let 0 < r < d
2 . Then there exists a constant Cr ≥ 0 such that,

for all ϕ, ψ and ω in S
(
R

d
)
, we have

∣∣∣∣
∫

Rd

ϕ(x)ψ(x)ω(x)dx

∣∣∣∣ ≤ Cr ‖ϕ‖ .

H
r ‖ψ‖ .

H
−r

(∥∥∥|ξ|
d
2 ω̂
∥∥∥
L2

+ ‖ω̂‖L1

)
.

A direct consequence of Lemma 1 is the following result [4].

Corollary 2. Let 0 < r < d
2 . Then the pointwise product (f, g) 7→ fg can be

extended as a bounded bilinear map from
.

H
r (

R
d
)
×

.

H
−r (

R
d
)
to S ′

(
R

d
)
.

It is well-known that for s > 0, u ∈
.

H
s (

R
d
)
if and only if u can be repre-

sented in the form

u = (−∆)
− s

2 g,

where g ∈ L2
(
R

d
)
. Here the operator Is = (−∆)

− s
2 admits the representation

(−∆)−
s
2 f = Ks ∗ f,

where Ks is the function with the Fourier transform |ξ|−s. The operator Isf =
Ks∗f is called the Riesz potential of order s > 0. For properties of Riesz kernel
see e.g. [12].

Example 1. Due to the well-known Hardy inequality (see e.g. [10], p. 92)
∥∥∥∥
u

|x|

∥∥∥∥
L2

≤
2

d− 2
‖∇u‖L2 ,

we see that |x|
−2

∈ M(
.

H
1
(Rd) →

.

H
−1

(Rd)).

Proof. Indeed, since the functions of class C∞
0

(
R

d
)
are dense in

.

H
1 (

R
d
)
in

the norm ‖.‖ .

H
r
(Rd)

, suppose u, v ∈ C∞
0

(
R

d
)
. Then by virtue of the Cauchy-

Schwarz inequality we obtain
∣∣∣
〈
|x|

−2
u, v
〉∣∣∣ ≤

∥∥∥∥
u

|x|

∥∥∥∥
L2

∥∥∥∥
v

|x|

∥∥∥∥
L2

≤ 4 ‖∇u‖L2 ‖∇v‖L2 ,

and thus ∥∥∥|x|−2
∥∥∥
M

( .

H
r
→

.

H
−r

) = sup
u∈D

∥∥∥|x|−2
u
∥∥∥ .

H
−r

= sup
u,v∈D

∣∣∣
〈
|x|

−2
u, v
〉∣∣∣ ≤ 4 <∞.

�

Additionally, we have the following inclusion:

Lemma 2. Let 0 ≤ r < d
2 . Then the following embedding

(2.1) L
d
2r

(
R

d
)
⊂ M

(
.

H
r (

R
d
)
→

.

H
−r (

R
d
))
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and

(2.2) L
d
r

(
R

d
)
⊂

.

Xr

(
R

d
)

hold.

Proof. We shall prove only (2.1); (2.2) is proved similarly. Let f ∈ L
d
2r

(
R

d
)
.

By using the following well-known Sobolev embedding:

Lq
(
R

d
)
⊂

.

H
−r (

R
d
)

with d
q = d

2 + r, we have by Hölder’ s inequality

‖fg‖ .

H
−r ≤ C ‖fg‖Lq ≤ C ‖f‖

L
d
2r

‖g‖Lσ

≤ C ‖f‖
L

d
2r

‖g‖ .

H
r

( .

H
r (

R
d
)
⊂ Lσ

(
R

d
))
,

where 1
σ = 1

2 − r
d . Then, it follows that

‖f‖
M

( .

H
r
→

.

H
−r

) = sup
‖g‖ .

H
r≤1

‖fg‖H−r ≤ C ‖f‖
L

d
2r
.

This proves (2.1). �

The spaces M(
.

H
r
(Rd) →

.

H
−r

(Rd)) for the range r ∈ [0, d2 [ were in-
troduced by Maz’ya and his co-workers [5], [6], [7] in order to study reg-
ularity problems for non-linear estimates in PDEs. For instance, the space

M(
.

H
1
(Rd) →

.

H
−1

(Rd)) has been considered as the space of potentials V such

that the Schrödinger operator −∆+ V is bounded from
.

H
1 (

R
d
)
to

.

H
−1 (

R
d
)

[9]. Recently, Maz’ya and Verbitsky established a necessary and sufficient con-

ditions for the boundedness of the relativistic Schrödinger operator (−∆)
1
2 +V

is bounded from
.

H
1
2
(
R

d
)
to

.

H
− 1

2
(
R

d
)
[8]. Further result can be found in [4]

and references therein.

3. Auxiliary estimates

In this section, we always assume that d ≥ 3. Now, we give another equiv-

alent norm on
.

H
s (

R
d
)
. Their proofs can be found in Strichartz [15] (see also

[13]).

Lemma 3. Let u ∈ S
(
R

d
)
and let 0 < s < 1. Then the following two state-

ments are equivalent:

(i) u ∈
.

H
s (

R
d
)
.

(ii) dsu(x) = C(d, s)

(∫

Rd

|u(x+ y)− u(x)|
2

|y|
d+2s

dy

) 1
2

< +∞.
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We can also define the fractional derivative operators

(3.1) (−∆)
s
2 u(x) = c(d, s)

∫

Rd

u(x)− u(y)

|x− y|
d+s

dy

for 0 < s < 2.
Another equivalence we need is:

Lemma 4. Let 0 < s < 2. Then, for all f ∈ Ḣs(Rd) ∩ L2(Rd), if we set

dsf(x) =





{∫
Rd

|f(x+y)+f(x−y)−2f(x)|2

|y|d+2s dy
} 1

2

for 1 < s < 2,
{∫

Rd

|f(x+y)−f(x)|2

|y|d+2s dy
} 1

2

for 0 < s < 1.

we have

‖f‖Ḣs(Rd) ∼ ‖dsf‖L2(Rd).

Proof. Indeed, by the Fubini theorem and the Plancherel theorem,

‖dsf‖L2(Rd) =

(∫

Rd

(∫

Rd

|f(x+ y)− 2f(x) + f(x− y)|2

|y|d+2s
dy

)
dx

)1/2

=

(∫

Rd

(∫

Rd

|f(x+ y)− 2f(x) + f(x− y)|2

|y|d+2s
dx

)
dy

)1/2

=

(∫

Rd

(∫

Rd

|(exp(−iξ · y)− 1|4|Ff(ξ)|2

|y|d+2s
dξ

)
dy

)1/2

=

(∫

Rd

(∫

Rd

|(exp(−iξ · y)− 1|4

|y|d+2s
dy

)
|Ff(ξ)|2 dξ

)1/2

.

Now observe that the function

ξ 7→

∫

Rd

|(exp(−iξ · y)− 1|4

|y|d+2s
dy

is radial and that the integral defining this function converges. Therefore, by
the homogeneity, we have

∫

Rd

|(exp(−iξ · y)− 1|4

|y|d+2s
dy = C(d, s)|ξ|−2s.

Consequently,

‖dsf‖L2(Rd) =
√
C(d, s)

(∫

Rd

|ξ|−2s|Ff(ξ)|2 dξ

)1/2

=
√
C(d, s)‖f‖Ḣs(Rd). �

We conclude this section by showing that one may write the singular integral
in (3.1) as a weighted second order differential quotient.
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Lemma 5. Let 0 < s < 2 and let (−∆)
s
2 be the fractional Laplacian operator

defined by (3.1). Then, for any u ∈ S
(
R

d
)
,

(3.2) (−∆)
s
2 u(x) = c(d, s)

∫

Rd

u(x+ y)− 2u(x) + u(x− y)

|x− y|d+s
dy.

Proof. The equivalence of the definitions in (3.1) and (3.2) immediately follows
by the standard changing variable formula. Indeed, by choosing z = y − x, we
have

(−∆)
s
2 u(x) = c(d, s)

∫

Rd

u(y)− u(x)

|y − x|
d+s

dy = c(d, s)

∫

Rd

u(z + x)− u(x)

|z|
d+s

dz.

Moreover, by substituting t = −z in last term of the above equality, we have
∫

Rd

u(z + x)− u(x)

|z|
d+s

dz =

∫

Rd

u(x− t)− u(x)

|t|
d+s

dt

and so after relabeling t as z

2

∫

Rd

u(z + x) − u(x)

|z|
d+s

dz =

∫

Rd

u(z + x)− u(x)

|z|
d+s

dz

+

∫

Rd

u(x− z)− u(x)

|z|
d+s

dz

=

∫

Rd

u(z + x)− 2u(x) + u(x− z)

|z|d+s
dz.

Hence

(−∆)
s
2 u(x) = c(d, s)

∫

Rd

u(z + x)− 2u(x) + u(x− z)

|z|
d+s

dz.
�

Remark 2. The above representation is useful to remove the singularity of the
integral at the origin. Indeed, for any smooth function u, a second order Taylor
expansion yields

|u(x+ z)− 2u(x) + u(x− z)|

|z|
d+s

≤

∥∥D2u
∥∥
L∞

|z|
d+s−2

,

which is integrable near 0 (for any fixed 0 < s < 2). Therefore, since u ∈
S
(
R

d
)
, one can get (3.2).

Our main goal in this paper is to extend the Maz’ya-Verbitsky result to a
more general case. Namely, we want to give a much more direct and simplified
proof on the result due to Lemarié and Gala [4] on the characterization of the

multipliers from
.

H
r (

R
d
)
to

.

H
−r (

R
d
)
without use of paradifferential calculus

(see [4, Theorem 3, p. 1053]).
We introduce the Hardy-Littlewood maximal operator M defined by

Mf(x) = sup
0<R<∞

R−d

∫

BR(x)

|f(y)| dy.
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It is known (see e.g. [14]) that the operator M is bounded on Lp
(
R

d
)
for all

1 < p <∞.
To prove Theorem 1, we make use of:

Lemma 6 ([2]). Suppose λ ∈ (0, 1), 0 < r < d and Irf be the Riesz potential

of order r with a non-negative density f . Then for almost all x ∈ R
d

(Irλf) (x) ≤ C [(Irf) (x)]
λ
[(Mf) (x)]

1−λ
,

where M is the Hardy-Littlewood maximal operator.

Before we continue, we make note of:

Lemma 7. For any α > 0 and β > 0, we have

(3.3) (dαu) (x) ≤ C(d, α)
[
Iβdα (−∆)

1
2
β
u
]
(x)

for all u ∈ D
(
R

d
)
.

Proof. The result is due to [6], but we give here a detailed proof for the readers’
convenience. Suppose u ∈ D

(
R

d
)
such that

u = (−∆)
− 1

2
β
f = Iβf.

In view of the identity

u(x+ 2h)− 2u(x+ h) + u(x) = [u(x+ 2h)− u(x)] − 2 [u(x+ h)− u(x)] ,

one has

[dαu(x)]
2
= c(d, α)

∫

Rd

|u(x+ 2h)− 2u(x+ h) + u(x)|
2

|h|
d+2α

dh

= c(d, α)

∫

Rd

|(u(x+ 2h)− u(x))− 2 (u(x+ h)− u(x))|2

|h|d+2α
dh

≤ c(d, α)

(∫

Rd

|(u(x+ 2h)− u(x))|2

|h|
d+2α

dh+

∫

Rd

|(u(x+ h)− u(x))|2

|h|
d+2α

dh

)

≤ c(d, α)

(∫

Rd

|(u(x+ h′)− u(x))|
2

|h′|
d+2α

dh′+

∫

Rd

|(u(x+ h)− u(x))|
2

|h|
d+2α

dh

)

≤ c(d, α)

(∫

Rd

1

|h|
d+2α

|Iβf(x+ h)− Iβf(x)|
2
dh

) 1
2

.

We can write

B = Iβf(x+ h)− Iβf(x)

= (Kβ ∗ f) (x+ h)− (Kβ ∗ f) (x)

=

∫

Rd

Kβ (x+ h− ζ) f(ζ)dζ −

∫

Rd

Kβ (x− ζ) f(ζ)dζ.
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Now, by setting ζ = ζ′ + h, it follows that

B =

∫

Rd

Kβ (x− ζ′) f(ζ′ + h)dζ′ −

∫

Rd

Kβ (x− ζ′) f(ζ′)dζ′

=

∫

Rd

Kβ (x− ζ) [f(ζ + h)− f(ζ)] dζ.

Then, we have

dαu(x) = c(d, α)

(∫

Rd

|B|
2

|h|
d+2α

dh

) 1
2

= c(d, α)



∫

Rd

∣∣∣∣∣

∫

Rd

Kβ (x− ζ)

[
f(ζ + h)− f(ζ)

|h|
d
2
+α

]
dζ

∣∣∣∣∣

2

dh




1
2

≤ c(d, α)



∫

Rd

(∫

Rd

Kβ (x− ζ)

∣∣∣∣∣
f(ζ + h)− f(ζ)

|h|
d
2
+α

∣∣∣∣∣ dζ
)2

dh




1
2

.

By Minkowski’s integral inequality, it follows that

dαu(x) ≤ c(d, α)

∫

Rd

(
|Kβ (x− ζ)|

2
∫

Rd

|f(ζ + h)− f(ζ)|
2

|h|
d+2α

dh

) 1
2

dζ

= c(d, α)

∫

Rd

Kβ (x− ζ)

(∫

Rd

|f(ζ + h)− f(ζ)|
2

|h|
d+2α

dh

) 1
2

dζ

= c(d, α)

∫

Rd

Kβ (x− ζ) (dαf) (ζ)dζ

= c(d, α)Iβdα (−∆)
β
2 u(x).

The proof is complete. �

4. Proof of Theorem 1

Proof. Let F be in
.

Xr

(
R

d
)
and f = (−∆)

r
2 F . Assume that every function

takes real value u ∈ D
(
R

d
)
,

∣∣∣∣
∫

Rd

(u(x))
2
f(x)dx

∣∣∣∣ =
∣∣∣∣
∫

Rd

(u(x))
2
(−∆)

r
2 F (x)dx

∣∣∣∣ .

By duality, we have
∣∣∣∣
∫

Rd

(u(x))
2
(−∆)

r
2 F (x)dx

∣∣∣∣ =
∣∣∣∣
∫

Rd

(
(−∆)

r
2 (u(x))

2
)
F (x)dx

∣∣∣∣ ,

where F ∈ L2
loc

(
R

d
)
and the integral on the right-hand side is well defined.
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Firstly suppose that 0 < r < 2. Recall that for u ∈ D
(
R

d
)
,

(−∆)
r
2 (u(x))2 = C (d, r)

∫

Rd

u(x+ 2y)2 − 2u(x+ y)2 + u(x)2

|x− y|d+r
dy.

In view of the identity

u(x+ 2y)2 − 2u(x+ y)2 + u(x)2

= 2u(x)(u(x+ 2y)− 2u(x+ y) + u(x))

+ 2(u(x+ y)− u(x))(u(x + 2y)− 2u(x+ y) + u(x))

+ (u(x+ y)− u(x))2 + (u(x+ 2y)− u(x+ y))2,

one has

(−∆)
r
2 (u(x))2

= 2C (d, r) u(x)

∫

Rd

u(x+ y)− 2u(x) + u(x− y)

|x− y|
d+r

dy

+ 2C (d, r)

∫

Rd

(u(x+ y)− u(x))(u(x + 2y)− 2u(x+ y) + u(x))

|x− y|d+r
dy

+ C (d, r)

∫

Rd

(u(x+ 2y)− u(x+ y))2 + (u(x)− u(x− y))2

|x− y|
d+r

dy

for any u ∈ D
(
R

d
)
. By virtue of the Hölder inequality, we have

∣∣∣∣∣

∫

Rd

(u(x+ y)− u(x))(u(x + 2y)− 2u(x+ y) + u(x))

|x− y|
d+r

∣∣∣∣∣ dy

≤

(∫

Rd

(u(x+ y)− u(x))2

|x− y|
d+r

dy

) 1
2
(∫

Rd

(u(x+ 2y)− 2u(x+ y) + u(x))2

|x− y|
d+r

dy

) 1
2

≤

(∫

Rd

(u(x+ y)− u(x))2

|x− y|d+r
dy

) 1
2

×



(∫

Rd

(u(x+ 2y)− u(x+ y))2

|x− y|d+r
dy

) 1
2

+

(∫

Rd

(u(x+ y)− u(x))2

|x− y|d+r
dy

) 1
2




≤ C
∣∣d r

2
u(x)

∣∣2 ,

where

dαu(x) =





{∫
Rd

|u(x+y)+u(x−y)−2u(x)|2

|x−y|d+2α dy
} 1

2

for 1 < α < 2,
{∫

Rd

|u(x)−u(y)|2

|x−y|d+2α dy
} 1

2

for 0 < α < 1.
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Hence,
∣∣∣(−∆)

r
2 (u(x))

2
∣∣∣

≤ C

{∫

Rd

|u(x)− u(y)|
2

|x− y|
d+r

dy + 2 |u(x)|

∣∣∣∣∣

∫

Rd

u(x+ y)− 2u(x) + u(x− y)

|x− y|
d+r

dy

∣∣∣∣∣

}

= 2C |u(x)|
∣∣∣(−∆)

r
2 u(x)

∣∣∣+ C
∣∣d r

2
u(x)

∣∣2 .

Using the preceding inequality, we estimate
∣∣∣∣
∫

Rd

(
(−∆)

r
2 (u(x))

2
)
F (x)dx

∣∣∣∣

≤ C ‖Fu‖L2

∥∥∥(−∆)
r
2 u
∥∥∥
L2

+ C

∫

Rd

|F (x)|
∣∣d r

2
u(x)

∣∣2 dx

≤ C ‖F‖ .

Xr
‖u‖ .

H
r

∥∥∥(−∆)
r
2 u
∥∥∥
L2

+ C

∫

Rd

|F (x)|
∣∣d r

2
u(x)

∣∣2 dx

≤ C ‖F‖Xr
‖u‖

2
.

H
r + C

∫

Rd

|F (x)|
∣∣d r

2
u(x)

∣∣2 dx.

We set g = (−∆)
r
2 u, that is, u = Irg. By virtue to Lemma 7, the last integral

is bounded by: ∫

Rd

|F (x)|
∣∣I r

2
d r

2
I r

2
g(x)

∣∣2 dx.

Using Hedberg’ s inequality (Lemma 6):
∣∣I r

2
v(x)

∣∣ ≤ C (Mv)
1
2 (x) (Irv)

1
2 (x),

we obtain ∫

Rd

|F (x)|
∣∣I r

2
d r

2
I r

2
g(x)

∣∣2 dx(4.1)

≤ C

∫

Rd

|F (x)|M
(
d r

2
I r

2
g
)
(x)
∣∣Ird r

2
I r

2
g(x)

∣∣ dx

≤ C
∥∥M

(
d r

2
I r

2
g
)∥∥

L2

∥∥(Ird r
2
I r

2
g
)
· F
∥∥
L2
.

The boundedness of M in L2
(
R

d
)
implies that the left-hand side of (4.1) is

dominated by

≤ C
∥∥d r

2
I r

2
g
∥∥
L2

‖F‖ .

Xr

∥∥Ird r
2
I r

2
g
∥∥ .

H
r

≤ C ‖g‖
2
L2 ‖F‖ .

Xr

= C ‖F‖ .

Xr
‖u‖2.

H
r .

When r = 2, then we just use

(−∆)r/2(u2) = (−∆)(u2)
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= −2u∆u− 2

n∑

j=1

(
∂u

∂xj

)2

.

The treatment of the first term is identical to the case when 0 < r < 2. As
for the second term, we use the interpolation inequality and argue as we did in
Lemma 6.

Let us finish the proof of the case when r > 2. We let m = [r/2] ≥ 1, where
[·] denotes the step function. Then for any u, v ∈ D

(
R

d
)
, one has

(−∆)r/2−m(uv)

= c(d, r)

∫

Rd

u(x+ y)v(x + y)− 2u(x)v(x) + u(x− y)v(x− y)

|y|d+r−2m
dy

= c(d, r)v(x)

∫

Rd

u(x+ y)− 2u(x) + u(x− y)

|y|d+r−2m
dy

+ c(d, r)

∫

Rd

u(x+ y)(v(x + y)− v(x)) + u(x− y)(v(x) − v(x− y))

|y|d+r−2m
dy

= c(d, r)v(x)

∫

Rd

u(x+ y)− 2u(x) + u(x− y)

|y|d+r−2m
dy

+ c(d, r)u(x)

∫

Rd

v(x+ y)− 2v(x) + v(x− y)

|y|d+r−2m
dy

+ c(d, r)

∫

Rd

(u(x− y)− u(x))(v(x) − v(x− y))

|y|d+r−2m
dy

+ c(d, r)

∫

Rd

(u(x+ y)− u(x))(v(x + y)− v(x))

|y|d+r−2m
dy.

Consequently, we have

|(−∆)r/2−m(uv)| ≤ C(|u(−∆)r/2−mv|+ |v(−∆)r/2−mu|+ dr/2−mu · dr/2−mv).

Hence

|(−∆)r/2(u2)| ≤ |(−∆)r/2−m(u∆mu)|+ |(−∆)r/2−mother terms (1)|

≤ |u(−∆)r/2u|+ other terms (2).

Here “the other terms” is a linear combination of

dr/2−m[∂αu]dr/2−m[∂βu],

where α, β are multiindices such that |α| + |β| = 2m. The treatment of
|u(−∆)r/2u| is the same as the case when 0 < r ≤ 2 and the control of other
terms can be achieved similarly by using Lemmas 6 and 7. This completes the
proof of Theorem 1. �

As a corollary of Theorem 1, we want to study coercivity property of the
Poisson equation

(4.2) −∆u = f,
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on R
d, d ≥ 3 where f be a complex-valued distribution from

.

Z1

(
R

d
)
.

Corollary 3. Let f ∈ D′
(
R

d
)
and let u be a solution of (4.2) such that ∇u ∈

.

X1

(
R

d
)
. Then f ∈

.

Z1

(
R

d
)
.

Proof. Indeed, by virtue of the integration by parts and the Schwarz inequality,
we obtain for all v, w ∈ D

(
R

d
)
,

|〈fv, w〉| = |〈f, vw〉| = |〈div ∇u, vw〉|

= |〈∇u,w∇v〉+ 〈∇u, v∇w〉|

≤ ‖w∇u‖L2 ‖∇v‖L2 + ‖v∇u‖L2 ‖∇w‖L2

≤ 2 ‖∇u‖ .

X1

‖∇v‖L2 ‖∇w‖L2

and thus

‖f‖ .

Z1

= sup
v∈D

‖fv‖ .

H
−1 = sup

v,w∈D
|〈fv, w〉| ≤ 2 ‖∇u‖ .

X1

.

The proof of the Corollary 3 is thus complete. �
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