Kangweon-Kyungki Math. Jour. 10 (2002), No. 2, pp. 131-140

NOTE ON THE FUZZY PROXIMITY SPACES

Kuo-Duok Park

ABSTRACT. This paper is devoted to the study of the role of fuzzy proximity spaces. We define a fuzzy K-proximity space, a fuzzy Rproximity space and prove some of its properties. Furthermore, we discuss the topological structure based on these fuzzy K-proximity and fuzzy R-proximity.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [11] in 1965. This idea was used by Chang [2],who in 1968 defined fuzzy topological spaces, and by Lowen [6],who in 1974 defined fuzzy uniform spaces. More recently, Katsaras [3], who in 1979, defined fuzzy proximities, on the base of the axioms suggested by Efremovič [8].

In this paper we propose some generalization of the concept of the fuzzy proximity, which we call a "fuzzy K-proximity" and a "fuzzy R-proximity". We also try to examine some of its properties and characterize the topological structure based on these fuzzy K-proximity and fuzzy R-proximity.

2. Preliminaries

As a preparation, we briefly review some basic definitions concerning a fuzzy proximity space. Throughout this paper, X is reserved to denote a nonempty set and let I^X be the collection of all mappings from X to the unit closed interval I = [0, 1] of the real line. A member

Received July 25, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 03E72.

Key words and phrases: fuzzy proximity space, fuzzy K-proximity space, fuzzy R-proximity space.

This research was supported by the Dongguk University Research Fund.

 μ of I^X is called a *fuzzy set* of X. For any $\mu, \rho \in I^X$, the *join* $\mu \lor \rho$, and the *meet* $\mu \land \rho$ of μ and ρ defined as followings: For any $x \in X$,

$$(\mu \lor \rho)(x) = \sup\{\mu(x), \rho(x)\} \text{ and } (\mu \land \rho)(x) = \inf\{\mu(x), \rho(x)\},\$$

respectively. And $\mu \leq \rho$ if for each $x \in X$, $\mu(x) \leq \rho(x)$. The complement μ' of a fuzzy set μ in X is $1 - \mu$ defined by $\mu'(x) = (1 - \mu)(x) = 1 - \mu(x)$ for each $x \in X$. 0 and 1 denote constant functions mapping all of X to 0 and 1, respectively. Now we give the definitions of a fuzzy topology and a closure operator.

DEFINITION 2.1. A fuzzy topology on X is a subset α of I^X which satisfies the following conditions:

(FT1) $0, 1 \in \alpha$. (FT2) If $\mu, \rho \in \alpha$, then $\mu \wedge \rho \in \alpha$. (FT3) If $\mu_i \in \alpha$ for each $i \in A$, then $sup_{i \in A}\mu_i \in \alpha$.

The pair (X, α) is called a *fuzzy topological space*, or *fts* for short.

DEFINITION 2.2. A map $\mu \mapsto cl(\mu)$, from I^X into I^X , is said to be a *closure operator* if it satisfies the following conditions:

 $\begin{array}{ll} (C1) \ \mu \leq cl(\mu). \\ (C2) \ cl(cl(\mu)) = cl(\mu). \\ (C3) \ cl(\mu \lor \rho) = cl(\mu) \lor cl(\rho). \\ (C4) \ cl(0) = 0. \end{array}$

Given a closure operator on I^X , the collection

$$\{\mu \in I^X \mid cl(1-\mu) = 1-\mu\}$$

is a fuzzy topology on X.

In the following we first define a fuzzy proximity space and a fuzzy point. Let δ be a binary relation on I^X , i.e., $\delta \subset I^X \times I^X$. The facts that $(\mu, \rho) \in \delta$ and $(\mu, \rho) \notin \delta$ are denoted by $\mu \delta \rho$ and $\mu \overline{\delta} \rho$, respectively.

DEFINITION 2.3. A binary relation δ on I^X is called a *fuzzy proximity* if δ satisfies the following conditions:

- (FP1) $\mu\delta\rho$ implies $\rho\delta\mu$.
- (FP2) $(\mu \lor \rho)\delta\sigma$ if and only if $\mu\delta\sigma$ or $\rho\delta\sigma$.

(FP3) $\mu\delta\rho$ implies $\mu \neq 0$ and $\rho \neq 0$. (FP4) $\mu\bar{\delta}\rho$ implies that there exists a $\sigma \in I^X$ such that $\mu\bar{\delta}\sigma$ and $(1-\sigma)\bar{\delta}\rho$. (FP5) $\mu \wedge \rho \neq 0$ implies $\mu\delta\rho$.

The pair (X, δ) is called a *fuzzy proximity space*.

DEFINITION 2.4. A fuzzy set in X is called a *fuzzy point* if it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is $\gamma(0 < \gamma < 1)$, we denote this fuzzy point by x_{γ} , where the point x is called its *support*.

DEFINITION 2.5. The fuzzy point x_{γ} is said to be *contained in a* fuzzy set μ , or to belong to μ , denoted by $x_{\gamma} \in \mu$, if $\gamma < \mu(x)$. Evidently, every fuzzy set μ can be expressed as the union of all the fuzzy points which belong to μ .

3. Fuzzy K-Proximity

We define a fuzzy K-proximity space and we investigate some properties of this structure.

DEFINITION 3.1. A binary relation δ on I^X is called a *fuzzy K*proximity if δ satisfies the following conditions:

(FK1) $x_{\gamma}\delta(\mu \lor \rho)$ if and only if $x_{\gamma}\delta\mu$ or $x_{\gamma}\delta\rho$.

(FK2) $x_{\gamma}\overline{\delta}0$ for all x_{γ} .

(FK3) $x_{\gamma} \in \mu$ implies $x_{\gamma} \delta \mu$.

(FK4) $x_{\gamma}\overline{\delta}\mu$ implies that there exists a $\rho \in I^X$ such that $x_{\gamma}\overline{\delta}\rho$ and $y_{\gamma}\overline{\delta}\mu$ for all $y_{\gamma} \in (1-\rho)$.

The pair (X, δ) is called a *fuzzy* K-*proximity space*.

One can easily show that the fuzzy proximity on I^X implies the fuzzy K-proximity on I^X .

THEOREM 3.2. Every fuzzy proximity on I^X implies the fuzzy Kproximity on I^X .

Proof. (FP1) and (FP2) implies (FK1), (FP3) implies (FK2), and (FP5) implies (FK3). If $\mu = \{x_{\gamma}\}$ and $\mu \overline{\delta} \rho$, then (FP4) there exists a

 $\sigma \in I^X$ with $x_{\gamma}\overline{\delta}\sigma$, and $(1-\sigma)\overline{\delta}\rho$. Hence for each $y_{\gamma} \in (1-\sigma)$, we have $y_{\gamma}\overline{\delta}\rho$. This means that (FP1) and (FP4) implies (FK4).

Now we shall introduce the fuzzy proximity δ_1 from the fuzzy K-proximity δ replacing the axiom (FK4) in the fuzzy K-proximity by the stronger one.

DEFINITION 3.3. A binary relation δ on I^X is called the *fuzzy proximity* if δ satisfies the axioms (FP1), (FP2), (FP3) in the Definition 2.3, and (FP4') For each $\sigma \in I^X$ there is a fuzzy point x_{γ} such that either $x_{\gamma}\delta\mu$, $x_{\gamma}\delta\sigma$ or $x_{\gamma}\delta\rho$, $x_{\gamma}\delta(1-\sigma)$, then we have $x_{\gamma}\delta\mu$ and $x_{\gamma}\delta\rho$.

DEFINITION 3.4. In a fuzzy K-proximity space (X, δ) , let δ_1 be a binary relation on I^X defined as follows : For each $\mu, \rho \in I^X$,

 $\mu \delta_1 \rho$ if and only if there is a fuzzy point x_{γ} such that $x_{\gamma} \delta \mu$ and $x_{\gamma} \delta \rho$.

THEOREM 3.5. The binary relation δ_1 on I^X defined in Definition 3.4 is the fuzzy proximity

Proof. We will show that δ_1 satisfies (FP1) ~ (FP5). (FP1) It is clear that $\mu \delta_1 \rho$ implies $\rho \delta_1 \mu$. (FP2)

$$(\mu \lor \rho)\delta_1 \sigma \iff \exists \text{ a fuzzy point } x_\gamma \text{ such that } x_\gamma \delta(\mu \lor \rho) \text{ and } x_\gamma \delta\sigma$$
$$\iff (x_\gamma \delta\mu \text{ or } x_\gamma \delta\rho) \text{ and } x_\gamma \delta\rho$$
$$\iff (x_\gamma \delta\mu, x_\gamma \delta\sigma) \text{ or } (x_\gamma \delta\rho, x_\gamma \delta\sigma)$$
$$\iff \mu \delta_1 \sigma \text{ or } \rho \delta_1 \sigma.$$

(FP3)

$$\mu \delta_1 \rho \implies \exists \text{ a fuzzy piont } x_\gamma \text{ such that } x_\gamma \delta \mu \text{ and } x_\gamma \delta \rho \implies \mu \neq 0 \text{ and } \rho \neq 0.$$

(FP4) Suppose that for each $\sigma \in I^X$, $\mu \delta_1 \sigma$ or $\rho \delta_1(1-\sigma)$. Hence for some fuzzy point x_{γ} we have either $x_{\gamma} \delta \mu$, $x_{\gamma} \delta \sigma$ or $x_{\gamma} \delta \rho$, $x_{\gamma} \delta(1-\sigma)$, therefore by (FP4') $x_{\gamma} \delta \mu$ and $x_{\gamma} \delta \rho$, that is, $\mu \delta_1 \rho$.

Note on the fuzzy proximity spaces

(FP5)

$$\mu \wedge \rho \neq 0 \implies \exists \text{ a fuzzy point } x_{\gamma} \text{ such that } x_{\gamma} \in \mu \text{ and } x_{\gamma} \in \rho \\ \implies x_{\gamma} \delta \mu \text{ and } x_{\gamma} \delta \rho \\ \implies \mu \delta_{1} \rho.$$

In what follows we introduce some properties of the fuzzy K-prox imity.

LEMMA 3.6. If
$$x_{\gamma}\delta\mu$$
 and $\mu \leq \rho$, then $x_{\gamma}\delta\rho$.
Proof. By (FK1) $x_{\gamma}\delta\mu \implies x_{\gamma}\delta(\mu \vee \rho) \implies x_{\gamma}\delta\rho$.

THEOREM 3.7. In the fuzzy K-proximity space (X, δ) if μ^{δ} is defined to be a set $\bigvee \{x_{\gamma} \mid x_{\gamma} \delta \mu \text{ and } x_{\gamma} \text{ is a fuzzy point in } X\}$ for each fuzzy set μ in X, then δ is a closure operator. Hence we can introduce the fuzzy topology $\mathcal{T}(\delta)$ on X by δ .

Proof. Since the other axioms are easily verified, it suffices to show that δ satisfies (C2). So, we assume that $x_{\gamma}\overline{\delta}\mu$. Then by (FK4) there exists a $\rho \in I^X$ such that $x_{\gamma}\overline{\delta}\rho$ and $y_{\gamma}\overline{\delta}\mu$ for all $y_{\gamma} \in (1-\rho)$. If $z_{\gamma} \in \mu^{\delta}$, then $z_{\gamma}\delta\mu$. Hence $z_{\gamma} \in \rho$, that is $\mu^{\delta} \leq \rho$. Since $x_{\gamma}\overline{\delta}\rho$ we have $x_{\gamma}\overline{\delta}\mu^{\delta}$. This means that $x_{\gamma} \in \mu^{\delta\delta}$ implies $x_{\gamma} \in \mu^{\delta}$ or $\mu^{\delta\delta} \subset \mu^{\delta}$. Therefore $\mu^{\delta\delta} = \mu^{\delta}$.

THEOREM 3.8. Let (X, α) be a fuzzy topological space. If a binary relation δ is defined by $x_{\gamma}\delta\mu$ if and only if $x_{\gamma} \in cl(\mu)$, then δ is a fuzzy K-proximity on I^X and the fuzzy topology $\mathcal{T}(\delta)$ induced by δ is the given topology α .

Proof. Now we will show that δ satisfies (FK1) ~ (FK4). (FK1)

$$\begin{aligned} x_{\gamma}\delta(\mu \lor \rho) &\iff x_{\gamma} \in cl(\mu \lor \rho) \\ &\iff x_{\gamma} \in cl(\mu) \lor x_{\gamma} \in cl(\rho) \\ &\iff x_{\gamma}\delta\mu \text{ or } x_{\gamma}\delta\rho. \end{aligned}$$

135

(FK2)

$$cl(0) = 0 \implies x_{\gamma}\overline{\delta}0$$
 for all x_{γ} .

(FK3)

$$\begin{aligned} x_{\gamma} \in \mu \implies x_{\gamma} \in cl(\mu) \\ \implies x_{\gamma} \delta \mu. \end{aligned}$$

(FK4)

$$\begin{aligned} x_{\gamma}\overline{\delta}\mu &\iff x_{\gamma} \notin cl(\mu) \\ &\iff x_{\gamma} \notin cl(cl(\mu)) \\ &\iff x_{\gamma}\overline{\delta}cl(\mu) \\ &\iff \text{ if } cl(\mu) = \rho, \text{ then } x_{\gamma}\overline{\delta}\rho \text{ and } y_{\gamma}\overline{\delta}\mu \text{ for all } y_{\gamma} \in (1 - cl(\mu)). \end{aligned}$$

Since $x_{\gamma} \in cl(\mu) \iff x_{\gamma}\delta\mu \iff x_{\gamma} \in \mu^{\delta}$, we have $cl(\mu) = \mu^{\delta}$, at is, $\mathcal{T}(\delta) = \alpha$. that is, $\mathcal{T}(\delta) = \alpha$.

THEOREM 3.9. The fuzzy topological space X is T_1 if and only if there is a fuzzy K-proximity δ on I^X satisfying the following condition: $(FK5) x_{\gamma} \delta\{y_{\gamma}\} \implies x_{\gamma} = y_{\gamma}.$

Proof. Assume X is T_1 . Then there is a binary relation δ on I^X satisfying conditions (FK1) ~ (FK4). So, $x_{\gamma} \in \mu^{\delta} \iff x_{\gamma} \delta \mu$. Hence $x_{\gamma} \delta \{y_{\gamma}\} \implies x_{\gamma} \in \{y_{\gamma}\}^{\delta} = \{y_{\gamma}\}$, since X is T_1 . That is, $x_{\gamma} = y_{\gamma}$. Conversely, if $x_{\gamma} \delta \{y_{\gamma}\}$ implies that $x_{\gamma} = y_{\gamma}$ then $\{y_{\gamma}\}^{\delta} = \{y_{\gamma}\}$, that

is, X is T_1 .

LEMMA 3.10. $x_{\gamma}\delta\{y_{\gamma}\}$ and $y_{\gamma}\delta\mu \implies x_{\gamma}\delta\mu$. Proof.

$$\begin{aligned} x_{\gamma}\overline{\delta}\mu \implies \exists \rho \text{ such that } x_{\gamma}\overline{\delta}\rho \text{ and } z_{\gamma}\overline{\delta}\mu \text{ for all } z_{\gamma} \in (1-\rho) \\ \implies y_{\gamma} \notin \rho(\text{ if } y_{\gamma} \in \rho \text{ then } x_{\gamma}\delta\{y_{\gamma}\}, \ y_{\gamma} \in \rho \text{ so we have } x_{\gamma}\delta\rho) \\ \implies y_{\gamma} \in (1-\rho), \text{ that is, } y_{\gamma}\overline{\delta}\mu. \end{aligned}$$

It is a contradiction.

136

4. Fuzzy R-Proximity

We introduce a fuzzy R-proximity and we prove that some of properties of this notion.

DEFINITION 4.1. A binary relation δ on I^X is called a *fuzzy R*-*proximity* if δ satisfies the following conditions:

(FR1) $\mu\delta\rho$ implies $\rho\delta\mu$. (FR2) $(\mu \lor \rho)\delta\sigma$ if and only if $\mu\delta\sigma$ or $\rho\delta\sigma$. (FR3) $\mu\delta\rho$ implies $\mu \neq 0$ and $\rho \neq 0$. (FR4) $x_{\gamma}\overline{\delta}\mu$ implies that there exists a $\rho \in I^X$ such that $x_{\gamma}\overline{\delta}\rho$ and $(1-\rho)\overline{\delta}\mu$. (FR5) $\mu \land \rho \neq 0$ implies $\mu\delta\rho$.

The pair (X, δ) is called a *fuzzy* R-*proximity space*.

THEOREM 4.2. In a fuzzy R-proximity space (X, δ) if μ^{δ} is defined to be a set $\bigvee \{x_{\gamma} \mid x_{\gamma} \delta \mu \text{ and } x_{\gamma} \text{ is a fuzzy point in } X\}$ for each fuzzy set μ in X, then δ is a closure operator. Hence we can introduce the fuzzy topology $\mathcal{T}(\delta)$ on X by δ .

Proof. Now we will show that δ is a closure operator.

(C1) Suppose that $\mu \neq 0$. There exists $y \in X$ such that $\mu(y) \neq 0$. Consider the fuzzy point $y_{\gamma} \in I^X$. Here $y_{\gamma} \wedge \mu \neq 0$ and therefore $y_{\gamma} \delta \mu$. Also, $\mu = \bigvee_{\mu(y)\neq 0} y_{\gamma}$. Hence, $\mu^{\delta} = \bigvee \{x_{\gamma} \mid x_{\gamma} \delta \mu\} \geq \bigvee_{\mu(y)\neq 0} y_{\gamma} = \mu$. Consequently $\mu^{\delta} \geq \mu$.

(C2) For this, it suffices to show that $x_{\gamma}\delta\mu^{\delta}$ if and only if $x_{\gamma}\delta\mu$. Suppose that $x_{\gamma}\delta\mu$. Then $x_{\gamma}\delta\mu^{\delta}$ because of $\mu \leq \mu^{\delta}$. Conversely, suppose that $x_{\gamma}\delta\mu^{\delta}$. Now $y_{\gamma} \leq \mu^{\delta}$ implies $y_{\gamma} \leq \bigvee\{x_{\gamma} \mid x_{\gamma}\delta\mu\}$, which gives $y_{\gamma} \leq x_{p}$ for some x_{p} such that $x_{p}\delta\mu$. We have $y_{\gamma}\delta\mu$. Thus, we get $x_{\gamma}\delta\mu^{\delta}$ and $y_{\gamma}\delta\mu$ for each $y_{\gamma} \leq \mu^{\delta}$. Hence $x_{\gamma}\delta\mu$. (C3)

$$(\mu \lor \rho)^{\delta} = \bigvee \{ x_{\gamma} \mid x_{\gamma} \delta(\mu \lor \rho) \}$$

= $\bigvee \{ x_{\gamma} \mid x_{\gamma} \delta\mu \text{ or } x_{\gamma} \delta\rho \}$
= $(\bigvee \{ x_{\gamma} \mid x_{\gamma} \delta\mu \}) \lor (\bigvee \{ x_{\gamma} \mid x_{\gamma} \delta\rho \})$
= $\mu^{\delta} \lor \rho^{\delta}$

(C4) It is also easy to see that $0^{\delta} = 0$.

THEOREM 4.3. If (X, δ) is a fuzzy *R*-proximity space, then $\mathcal{T}(\delta)$ is fuzzy R_0 regular.

Proof. Let μ be a fuzzy closed set and x_{γ} a fuzzy point such that $x_{\gamma}\overline{\delta}\mu$. Then there is a ρ such that $x_{\gamma}\overline{\delta}\rho$ and $(1-\rho)\overline{\delta}\mu$. Hence $x_{\gamma}\wedge\rho^{\delta}=0$ or $x_{\gamma} \leq 1-\rho^{\delta}=\sigma$. On the other hand $\mu \wedge (1-\rho)^{\delta}=0$ or $\mu \leq 1-(1-\rho)^{\delta}=\lambda$, that is, $1-\lambda \leq 1-\mu$. Since $\sigma \wedge \lambda = 0$, there exist fuzzy open sets σ, λ such that $x_{\gamma} \leq \sigma \leq 1-\lambda \leq 1-\mu$.

To prove that the induced fuzzy topology $\mathcal{T}(\delta)$ also satisfies the R_0 axiom, i.e., $x_{\gamma} \in y_{\gamma}^{\delta}$ implies $y_{\gamma} \in x_{\gamma}^{\delta}$, let $x_{\gamma} \in y_{\gamma}^{\delta}$. Then $x_{\gamma} \delta y_{\gamma}$ if and only if $y_{\gamma} \delta x_{\gamma}$ if and only if $y_{\gamma} \in x_{\gamma}^{\delta}$.

THEOREM 4.4. In a fuzzy R_0 regular space (X, \mathcal{T}) , let δ be a binary relation on I^X define as follows:

$$\mu\delta\rho$$
 if and only if $\mu^{\delta}\wedge\rho^{\delta}\neq 0$,

then δ is the fuzzy *R*-proximity, which is compatible with \mathcal{T} .

Proof. We will show that δ satisfies (FR1)~(FR5). (FR1) $\mu\delta\rho \implies \mu^{\delta} \wedge \rho^{\delta} \neq 0 \implies \rho^{\delta} \wedge \mu^{\delta} \neq 0 \implies \rho\delta\mu$. (FR2)

$$\begin{aligned} (\mu \lor \rho) \delta \sigma \iff (\mu \lor \rho)^{\delta} \land \sigma^{\delta} \neq 0 \\ \iff (\mu^{\delta} \lor \rho^{\delta}) \lor \sigma^{\delta} \neq 0 \\ \iff (\mu^{\delta} \land \sigma^{\delta}) \lor (\rho^{\delta} \land \sigma^{\delta}) \neq 0 \\ \iff \mu^{\delta} \land \sigma^{\delta} \neq 0 \text{ or } \rho^{\delta} \land \sigma^{\delta} \neq 0 \\ \iff \mu \delta \sigma \text{ or } \rho \delta \sigma. \end{aligned}$$

(FR3)

(

$$\begin{split} \mu \delta \rho \implies \mu^{\delta} \wedge \rho^{\delta} \neq 0 \\ \implies \mu^{\delta} \neq 0 \text{ and } \rho^{\delta} \neq 0 \\ \implies \mu \neq 0 \text{ and } \rho \neq 0. \end{split}$$

138

(FR4) Suppose that $x_{\gamma}\overline{\delta}\mu$. Applying the definition of δ to $x_{\gamma}\overline{\delta}\mu$ we obtain $x_{\gamma}^{\delta} \wedge \mu^{\delta} = 0$ and hence either $x_{\gamma}^{\delta} = 0$ or $\mu^{\delta} = 0$. Since X is regular, there exist fuzzy open sets ρ, σ such that $x_{\gamma} \leq \rho \leq 1 - \sigma \leq 1 - \mu^{\delta}$. The following two cases arise:

Cases(1). $x_{\gamma}^{\delta} = 0$. Take $\sigma = 1$. Then $x_{\gamma}^{\delta} \wedge \sigma^{\delta} = 0$ implies $x_{\gamma}\overline{\delta}\sigma$, and $(1 - \sigma)^{\delta} \wedge \mu^{\delta} = 0$ implies $(1 - \sigma)\overline{\delta}\mu$.

Cases(2). $\mu^{\delta} = 0$. Take $\sigma = 0$. Then $x_{\gamma}^{\delta} \wedge \sigma^{\delta} = 0$ implies $x_{\gamma}\overline{\delta}\sigma$, and $(1 - \sigma)^{\delta} \wedge \mu^{\delta} = 0$ implies $(1 - \sigma)\overline{\delta}\mu$. (FR5) $\mu \wedge \rho \neq 0 \implies \mu^{\delta} \wedge \rho^{\delta} \neq 0 \implies \mu\delta\rho$.

THEOREM 4.5. A fuzzy K-proximity space is also R-proximity.

Proof. Let (X, δ) be a fuzzy K-proximity space. Then, $\mathcal{T}(\delta)$ is a fuzzy completely regular [4, 8]. Since a completely regular space is a regular, $\mathcal{T}(\delta)$ is a fuzzy R_0 regular. Hence, (X, δ) is a fuzzy R-proximity space.

References

- G. Artico and R. Moresco, Fuzzy proximities and totally bounded fuzzy uniformities, J. Math. Anal. Appl. 99 (1984), 320–337.
- 2. C.L. Chang, Fuzzy topological space, J. Math. Anal. Appl. 24 (1968), 182–190.
- A.K. Katsaras, Fuzzy proximity spaces, J. Math. Anal. Appl. 68 (1979), 100– 110.
- C.Y. Kim, K.L. Choi and Y.S. Shin, On the K-proximities, Kyungpook Mathematical Journal 13, No.1 (1973), 21–32.
- C.Y. Kim, W.K. Chung and K.D. Park, On the R-proximity spaces, Yonsei Nonchong 13 (1976), 1–5.
- 6. R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981), 370–385.
- P-M. Pu and Y-M. Liu, Fuzzy topology 1, J. Math. Anal. Appl. 76 (1980), 571–599.
- S.A. Naimpally and B.D. Warrack, *Proximity spaces*, Cambridge Univ. Press, New York (1970).
- P. Srivastava and R.L. Gupta, Fuzzy proximity structures and fuzzy ultrafilters, J. Math. Anal. Appl. 94 (1983), 297–311.
- C.K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316–328.
- 11. L.A. Zadeh, Fuzzy sets, Informs. Contr. 8 (1965), 333–353.

Department of Mathematics

Dongguk University Seoul 100–715, Korea *E-mail*: kdpark@dongguk.edu