• Title/Summary/Keyword: SOLVENT INDUCED CRYSTALLIZATION

Search Result 12, Processing Time 0.018 seconds

Drowning-out Crystallization of Calcium Lactate for Crystal Size Control (결정입자 제어를 위한 젖산칼슘 용석결정화 기술)

  • Kim, Jong-Min;Chang, Sang Mok;Kim, In-Ho;Koo, Yoon-Mo;Hong, Haehyun;Kim, Woo-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.740-746
    • /
    • 2009
  • In the present study, the drowning-out crystallization of L(+)-calcium lactate was investigated in order to develop the crystallization separation process. The crystallization of the calcium lactate was induced by injecting the alcoholic anti-solvent into the aqueous solution of calcium lactate and the control of the calcium lactate crystal size during the crystallization was primarily investigated under the consideration of the anti-solvent species, anti-solvent composition and agitation speed as the key operating factors. Alcohols of methanol, ethanol, n-propanol and i-propanol were used as the anti-solvent for the drowning-out crystallization. Prior to the crystallization experiment, the solubility of calcium lactate in the water-alcohol mixture was measured along with the variation of the alcohol species and composition, which was necessary to estimate the supersaturation level of the crystallization. By the drowning-out crystallization, the calcium lactate crystals of the fabric shape were obtained. Using the ethanol as the antisolvent, the fabric crystals close to the needle shape were produced. However, the hairy crystals were obtained by using the propanol as the anti-solvent. Due to such morphological features, the crystals was highly apt to form the aggregates. The aggregation of the crystals was intensified as increasing the alcohol fraction in the water-alcohol mixture. Meanwhile, the agitation caused the breakage of crystals, resulting in the decrease of the crystal size. Therefore, the crystal size in the crystallization was predominantly determined by the competition between the crystal aggregation and breakage.

Solvent Induced Crystallization of Polycarbonate in Mixed Solvent (혼합용매에 의한 Polycarbonate의 결정화)

  • 황덕근;이창엽;설용건
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.811-817
    • /
    • 2001
  • Crystallization behaviour of bisphenol A polycarbonate(PC) from amorphous phase was studied by varing solvent/nonsolvent ratios in liquid phase. Chloroform and isopropanol were used as a solvent and a nonsolvent, respectively. Samples were characterized by optical microphotography, scanning electron microscope (SEM), X-ray diffaction (XRD), and differential scanning calorimeter (DSC). DSC and XRD measurement were used to determine the crystallinity of PC. The solubility constant seems to critical to control the PC crystallinity in solvent/nonsolvent mixture. The difference in PC crystallinity is explained by the difference in solubility constant of the mixture depending on the solvent/nonsolvent ratio. PC solution of 75/25 wt% (solvent/nonsolvent) ratio produced PC powder showing maximum crystallinity. At this condition solubility constant (9.85) of the mixed solvent was close to PC (9.9).

  • PDF

Surface Crystallization of Polycarbonate by Mixed Solvents (혼합 용매에 의한 폴리카보네이트의 표면 결정화)

  • Yoo, Youngjae;Park, Changhyun;Won, Jong Chan;Lee, Sung-Goo;Choi, Kil-Yeong;Lee, Jae Heung
    • Journal of Adhesion and Interface
    • /
    • v.5 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • In this study, we prepared the polycarbonates with various molecular weights by melt polymerization and investigated the crystallization by solvent induced crystallization. Effects of the types and compositions of solvents, crystallizing temperatures and molecular weights on crystallinity and melt temperatures of polycarbonates were evaluated by DSC, XRD and SEM. In case of low molecular weight polycarbonates and high crystallization temperature, the crystallinity of the polycarbonate was increased. As the increase of the crystallization temperature and the solution concentration, relatively uniform crystalline structures were obtained. Also, by treating with mixed solvents, the control of desired surface areas and crystallinity could be possible.

  • PDF

Crystallization Behavior of Polymers as Viewed from the Molecular Level

  • Tashiro, Kohji;Sasaki, Sono;Ueno, Yoko;Yoshioka, Akiko;Kobayashi, Masamichi
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The structural changes viewed from the molecular level have been investigated for the isothermal crystallization phenomena of polyethylene (PE) and the solvent-induced crystallization phenomenon of syndiotactic polystyrene (sPS) glassy sample. The data, which were collected by the time-resolved measurements of Fourier-transform infrared spectra, Raman spectra, synchrotron-sourced small-angle X-ray scattering, wide-angle X-ray scattering, and so on, were combined together to extract the detailed structural information in these phase transition phenomena. In the case of PE, the isothermal crystallization from the melt to the orthorhombic form was found to occur via the conformationally-disordered trans chain form, followed by the formation of the lamellar stacking structure of regular orthorhombic-type crystals. In the case of sPS, the amorphous chains in the glassy sample were found to enhance the mobility through the interaction with the injected solvent molecules, which act as a trigger to cause the conformational ordering from the random coil to the regular T$_2$G$_2$-type helical form. The thus created short helical segments were found to grow into longer helices, which gathered together to form the crystallites, as revealed by the organized coupling of the infrared, Raman and X-ray scattering data.

  • PDF

Structural Changes of PVDF Membranes by Phase Separation Control (상분리 조절에 의한 PVDF막의 구조 변화)

  • Lee, Semin;Kim, Sung Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.

A Scanning Electron Microscopic Study on the Phase Demixing of PVA Gel (주사전자현미경을 이용한 PVA Gel의 상전이에 관한 연구)

  • Hong, Sung-Goo;Sohn, Jeong-In;Lee, Ihn-Chong;Kim, Soo-Jin
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.117-128
    • /
    • 2001
  • DMF is not a good solvent for PVA. There is no solvent-PVA interaction such as H-bonding. DMF/PVA makes a UCST system. DMF/PVA makes a gel through crystallization-induced gelation. X-ray, thermal analysis, and other experimental proofs are presented. The gelation rate was faster at low temperature. Small addition of PEG increased the rate of gelation, but urea decreased the rate. SEM showed the phase demixing process very clearly. In the early stage of gelation, only phase demixing was occurring at a low rate. Hence, no holes appear in the early stage photographs. As demixing proceeded further, the holes began to appear and the sizes became bigger. DMF phase remains many holes after vaporization and PVA phase constitute the matrix phase.

  • PDF

Formation of Mesoporous Membrane by Reverse Thermally induced Phase Separation (RTIPS) Process Using Flash Freezing (Mesoporous 막 제조를 위한 급냉법에 의한 역 열유도상전이공정)

  • Yeom, Choongkyun;Kim, Jiwon;Park, Heeyoung;Park, Seong Eun;Lee, Kee Yoon;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.67-79
    • /
    • 2021
  • Mesoporous polystyrene (PS) and polyethersulfone (PES) membranes have been fabricated by reverse-thermally induced phase separation (RTIPS) process, using flash freezing. The mesoporous pores can be created by the nano-scaled phase separation induced by the formation and growth of solvent crystals in the dope solution in RTIPS process. RTIPS process has been characterized through analysis on the enthalpy change in the solvent of the dope solution, the morphology of the membrane fabricated with different polymer content, and the pore size distribution and its standard deviation of pore size of the membrane with polymer content via DSC, SEM, and BET, respectively. It is found that the kinetic aspect of the dope solution, i.e., the crystallization of solvent is a crucial factor to determine the structure of membrane fabricated in RTIPS rather than the thermodynamic aspect of the dope solution.

Controlling the Morphology of Polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) Membranes Via Phase Inversion Method (상전이법을 이용한 P(VDF-co-HFP) 분리막 구조제어)

  • Song, Ye Jin;Kim, Jong Hoo;Kim, Ye Som;Kim, Sang Deuk;Cho, Young Hoon;Park, Ho Sik;Nam, Seung Eun;Park, You In;Son, Eun Ho;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 2018
  • In this work, the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes were systemically investigated using phase inversion technique, to target membrane contactor applications. As the presence of macrovoids degrade the mechanical integrity of the membranes and jeopardize the long-term stability of membrane contactor processes (e.g. wetting), a wide range of dope compositions and casting conditions was studied to eliminate the undesired macrovoids. The type of solvent had significant effect on the membrane morphology, and the observed morphology were correlated to the physical properties of the solvent and solvent-polymer interactions. In addition, to fabricate macrovoid-free structure, the effects of different coagulation temperatures, inclusion of additives, and addition of nonsolvents were investigated. Due to the slow crystallization rate of P(VDF-co-HFP) polymer, it was found that obtaining porous membrane without macrovoids is difficult using only nonsolvent-induced phase separation method (NIPS). However, combined other phase inversion methods such as evaporation-induced phase separation (EIPS) and vapor-induced phase separation (VIPS), the desired membrane morphology can be obtained without any macrovoids.