Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.187

Controlling the Morphology of Polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) Membranes Via Phase Inversion Method  

Song, Ye Jin (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Kim, Jong Hoo (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Kim, Ye Som (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Kim, Sang Deuk (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Cho, Young Hoon (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Park, Ho Sik (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Nam, Seung Eun (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Park, You In (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Son, Eun Ho (Interface Materials and Chemical Engineering Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Kim, Jeong F. (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Membrane Journal / v.28, no.3, 2018 , pp. 187-195 More about this Journal
Abstract
In this work, the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes were systemically investigated using phase inversion technique, to target membrane contactor applications. As the presence of macrovoids degrade the mechanical integrity of the membranes and jeopardize the long-term stability of membrane contactor processes (e.g. wetting), a wide range of dope compositions and casting conditions was studied to eliminate the undesired macrovoids. The type of solvent had significant effect on the membrane morphology, and the observed morphology were correlated to the physical properties of the solvent and solvent-polymer interactions. In addition, to fabricate macrovoid-free structure, the effects of different coagulation temperatures, inclusion of additives, and addition of nonsolvents were investigated. Due to the slow crystallization rate of P(VDF-co-HFP) polymer, it was found that obtaining porous membrane without macrovoids is difficult using only nonsolvent-induced phase separation method (NIPS). However, combined other phase inversion methods such as evaporation-induced phase separation (EIPS) and vapor-induced phase separation (VIPS), the desired membrane morphology can be obtained without any macrovoids.
Keywords
Phase inversion; P(VDF-co-HFP); macrovoid; vapor-induced phase separation (VIPS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Loeb and S. Sourirajan, "Sea water demineralization by means of an osmotic membrane", Advances in Chemistry, 38, 117 (1963).
2 J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioli, and Y. M. Lee, "Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods", J. Membr. Sci., 509, 94 (2016).   DOI
3 J. H. Kim, S. H. park, M. J. Lee, S. M. Lee, W. H. Lee, K. H. Lee, N. R. Kang, H. J. Jo, J. F. Kim, E. Drioli, and Y. M. Lee, "Thermally rearranged polymer membranes for desalination", Energy & Environmental Science, 9, 878 (2016).   DOI
4 E. Drioli, G. Di Profio, and E. Curcio, "Progress in membrane crystallization", Current Opinion in Chemical Engineering, 1, 178 (2012).   DOI
5 J. F. Kim, A. Park, S. J. Kim, P. S. Lee, Y. H. Cho, H. S. Park, S. E. Nam, and Y. I. Park, "Harnessing clean water from power plant emissions using membrane condenser technology", ACS Sustainable Chemistry & Engineering, 6, 6425 (2018).   DOI
6 A. Park, Y. M. Kim, J. F. Kim, P. S. Lee, Y. H. Cho, H. S. Park, S. E. Nam, and Y. I. Park, "Biogas upgrading using membrane contactor process: Pressure-cascaded stripping configuration", Separation and Purification Technology, 183, 358 (2017).   DOI
7 F. Sufyan, T. Marino, H.F. Makki, Q.F. Alsalhy, S. Blefari, F. Macedonio, E. Di Nicolò, L. Giorno, E. Drioli, and A. Figoli, "Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation", Chemical Engineering and Processing: Process Intensification, 102, 16 (2016).   DOI
8 C. A. Smolders, A. J. Reuvers, R. M. Boom, and I. M. Wienk, "Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids", J. Membr. Sci., 73, 259 (1992).   DOI
9 S. A. KcKelvey and W. J. Koros, "Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes", J. Membr. Sci., 112, 29 (1996).   DOI
10 A. Bottino, G. Camera-Roda, G. Capannelli, and S. Munari, "The formation of microporous polyvinylidene difluoride membranes by phase separation", J. Membr. Sci., 57, 1 (1991).   DOI
11 N. Peng, T. S. Chung, and K. Y. Wang, "Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes", J. Membr. Sci., 318, 363 (2008).   DOI
12 J. T. Jung, J. F. Kim, H. H. Wang, E. di Nicolo, E. Drioli, and Y. M Lee, "Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 514, 250 (2016).   DOI
13 J. Ren, J. Zhou, and M. Deng, "Morphology transition of asymmetric polyetherimide flat sheet membranes with different thickness by wet phase-inversion process", Separation and Purification Technology, 74, 119 (2010).   DOI
14 G. R. Guillen, G. Z. Ramon, H. P. Kavehpour, R. B. Kaner, and E. M. V. Hoek, "Direct microscopic observation of membrane formation by nonsolvent induced phase separation", J. Membr. Sci., 431, 212 (2013).   DOI
15 A. Figoli, T. Marino, S. Simone, E. Di Nicolo, X.-M. Li, T. He, S. Tornaghi, and E. Drioli. "Towards non-toxic solvents for membrane preparation: A review", Green Chemistry, 16, 4034 (2014).   DOI